european train control system a case study in formal
play

European Train Control System: A Case Study in Formal Verification e - PowerPoint PPT Presentation

European Train Control System: A Case Study in Formal Verification e Platzer 1 Jan-David Quesel 2 Andr 1 Carnegie Mellon University, Pittsburgh, PA 2 University of Oldenburg, Department of Computing Science, Germany International Conference on


  1. European Train Control System: A Case Study in Formal Verification e Platzer 1 Jan-David Quesel 2 Andr´ 1 Carnegie Mellon University, Pittsburgh, PA 2 University of Oldenburg, Department of Computing Science, Germany International Conference on Formal Engineering Methods (ICFEM), Rio de Janeiro, 2009 Andr´ e Platzer, Jan-David Quesel ETCS: A Case Study in Formal Verification ICFEM 2009 1 / 19

  2. ETCS Control Verification Problem Hybrid System Continuous evolutions (differential equations) Discrete jumps (control decisions) τ. p τ. v z τ. a v a 6 3.0 2 5 2.5 1 2.0 4 1.5 3 4 t 1 2 3 1.0 2 � 1 0.5 1 4 t 4 t � 2 1 2 3 1 2 3 Andr´ e Platzer, Jan-David Quesel ETCS: A Case Study in Formal Verification ICFEM 2009 2 / 19

  3. European Train Control System τ. p m . e ST SB Objectives Overview 1 Collision free 1 No static partitioning of track 2 Radio Block Controller (RBC) 2 Maximise throughput & manages movement authorities velocity (300 km/h) 3 2 . 1 ∗ 10 6 passengers/day dynamically 3 Moving block principle Andr´ e Platzer, Jan-David Quesel ETCS: A Case Study in Formal Verification ICFEM 2009 3 / 19

  4. European Train Control System τ. p m . e ST SB Parametric Hybrid Systems continuous evolution along differential equations + discrete change m . e MA z τ. p v t τ. v Andr´ e Platzer, Jan-David Quesel ETCS: A Case Study in Formal Verification ICFEM 2009 3 / 19

  5. European Train Control System τ. p m . e ST SB Parametric Hybrid Systems continuous evolution along differential equations + discrete change m . e MA z τ. p v t τ. v Andr´ e Platzer, Jan-David Quesel ETCS: A Case Study in Formal Verification ICFEM 2009 3 / 19

  6. European Train Control System τ. p m . e ST SB Parametric Hybrid Systems continuous evolution along differential equations + discrete change m . e MA MA z z τ. p v v t τ. v Andr´ e Platzer, Jan-David Quesel ETCS: A Case Study in Formal Verification ICFEM 2009 3 / 19

  7. European Train Control System τ. p m . e ST SB Parametric Hybrid Systems continuous evolution along differential equations + discrete change Parameters have nonlinear influence m . e MA MA Handle SB as free symbolic parameter? z z τ. p Challenge: verification (falsifying is “easy”) Which constraints for SB ? v v t τ. v ∀ m . e ∃ SB “train always safe” Andr´ e Platzer, Jan-David Quesel ETCS: A Case Study in Formal Verification ICFEM 2009 3 / 19

  8. Differential Dynamic Logic (d L ) τ. v τ. p m . e Example → [ ]( ) Precondition Operation model Property Andr´ e Platzer, Jan-David Quesel ETCS: A Case Study in Formal Verification ICFEM 2009 4 / 19

  9. Differential Dynamic Logic (d L ) τ. v τ. p m . e Example τ. v 2 ≤ 2 b ( m . e − τ. p ) → [ ]( τ. p ≤ m . e ) Precondition Operation model Property Andr´ e Platzer, Jan-David Quesel ETCS: A Case Study in Formal Verification ICFEM 2009 4 / 19

  10. Differential Dynamic Logic (d L ) τ. v τ. p m . e Example τ. v 2 ≤ 2 b ( m . e − τ. p ) → [ τ. p ′ = τ. v , τ. v ′ = τ. a ]( τ. p ≤ m . e ) Precondition Operation model Property Continuous evolution: differential equation Andr´ e Platzer, Jan-David Quesel ETCS: A Case Study in Formal Verification ICFEM 2009 4 / 19

  11. Differential Dynamic Logic (d L ) τ. v τ. p m . e Example τ. v 2 ≤ 2 b ( m . e − τ. p ) → [ τ. a := ∗ ; τ. p ′ = τ. v , τ. v ′ = τ. a ]( τ. p ≤ m . e ) Precondition Operation model Property Random assignment Andr´ e Platzer, Jan-David Quesel ETCS: A Case Study in Formal Verification ICFEM 2009 4 / 19

  12. Differential Dynamic Logic (d L ) τ. v τ. p m . e Example τ. v 2 ≤ 2 b ( m . e − τ. p ) → [ τ. a := ∗ ; ? τ. a ≤ − b ; τ. p ′ = τ. v , τ. v ′ = τ. a ]( τ. p ≤ m . e ) Precondition Operation model Property Test Andr´ e Platzer, Jan-David Quesel ETCS: A Case Study in Formal Verification ICFEM 2009 4 / 19

  13. 3D Movement Authorities τ. v τ. p Vectorial MA m = ( d , e , r ): Beyond point m . e train not faster than m . d . Train should try not to keep recommended speed m . r Andr´ e Platzer, Jan-David Quesel ETCS: A Case Study in Formal Verification ICFEM 2009 6 / 19

  14. 3D Movement Authorities τ. v m . r τ. p Vectorial MA m = ( d , e , r ): Beyond point m . e train not faster than m . d . Train should try not to keep recommended speed m . r Andr´ e Platzer, Jan-David Quesel ETCS: A Case Study in Formal Verification ICFEM 2009 6 / 19

  15. 3D Movement Authorities τ. v m . r τ. p m 1 . d m 1 . e Vectorial MA m = ( d , e , r ): Beyond point m . e train not faster than m . d . Train should try not to keep recommended speed m . r Andr´ e Platzer, Jan-David Quesel ETCS: A Case Study in Formal Verification ICFEM 2009 6 / 19

  16. 3D Movement Authorities τ. v m . r τ. p m 1 . d m 1 . e Vectorial MA m = ( d , e , r ): Beyond point m . e train not faster than m . d . Train should try not to keep recommended speed m . r Andr´ e Platzer, Jan-David Quesel ETCS: A Case Study in Formal Verification ICFEM 2009 6 / 19

  17. 3D Movement Authorities τ. v m . r m 2 . d τ. p m 2 . e Vectorial MA m = ( d , e , r ): Beyond point m . e train not faster than m . d . Train should try not to keep recommended speed m . r Andr´ e Platzer, Jan-David Quesel ETCS: A Case Study in Formal Verification ICFEM 2009 6 / 19

  18. 3D Movement Authorities τ. v m . r m 2 . d τ. p m 2 . e Vectorial MA m = ( d , e , r ): Beyond point m . e train not faster than m . d . Train should try not to keep recommended speed m . r Andr´ e Platzer, Jan-David Quesel ETCS: A Case Study in Formal Verification ICFEM 2009 6 / 19

  19. 3D Movement Authorities τ. v m . r m 3 . d τ. p m 3 . e Vectorial MA m = ( d , e , r ): Beyond point m . e train not faster than m . d . Train should try not to keep recommended speed m . r Andr´ e Platzer, Jan-David Quesel ETCS: A Case Study in Formal Verification ICFEM 2009 6 / 19

  20. 3D Movement Authorities τ. v m . r m 3 . d τ. p m 3 . e Vectorial MA m = ( d , e , r ): Beyond point m . e train not faster than m . d . Train should try not to keep recommended speed m . r Andr´ e Platzer, Jan-David Quesel ETCS: A Case Study in Formal Verification ICFEM 2009 6 / 19

  21. Separation Principle Lemma (Principle of separation by movement authorities) Each train respects its movement authority and the RBC partitions into disjoint movement authorities ⇒ trains can never collide. τ. p m . e ST SB Andr´ e Platzer, Jan-David Quesel ETCS: A Case Study in Formal Verification ICFEM 2009 7 / 19

  22. Parametric Skeleton of ETCS Read from the informal specification. . . ETCS skel : ( train ∪ rbc ) ∗ train : spd ; atp ; drive : (? τ. v ≤ m . r ; τ. a := ∗ ; ? − b ≤ τ. a ≤ A ) spd ∪ (? τ. v ≥ m . r ; τ. a := ∗ ; ? − b ≤ τ. a ≤ 0) : if ( m . e − τ. p ≤ SB ∨ rbc . message = emergency ) τ. a := − b atp : t := 0; ( τ. p ′ = τ. v , τ. v ′ = τ. a , t ′ = 1 ∧ τ. v ≥ 0 ∧ t ≤ ε ) drive : ( rbc . message := emergency ) ∪ ( m := ∗ ; ? m . r > 0) rbc Andr´ e Platzer, Jan-David Quesel ETCS: A Case Study in Formal Verification ICFEM 2009 8 / 19

  23. Parametric Skeleton of ETCS As transition system. . . m 0 := m m := ∗ τ. p ′ = τ. v , τ. v ′ = τ. a , t ′ = 1 rbc . message := emergency τ. v ≥ 0 ∧ t ≤ ε t := 0 τ. a := − b ? τ. v ≤ m . r ? − b ≤ τ. a ≤ A τ. a := ∗ ?( m . e − τ. p ≤ SB ∨ rbc . message = emergency ) ? m . e − τ. p ≥ SB ∧ ? τ. v ≥ m . r ?0 > τ. a ≥ − b τ. a := ∗ rbc . message � = emergency ) Andr´ e Platzer, Jan-David Quesel ETCS: A Case Study in Formal Verification ICFEM 2009 8 / 19

  24. Parametric Skeleton of ETCS ETCS skel : ( train ∪ rbc ) ∗ : spd ; atp ; drive train spd : (? τ. v ≤ m . r ; τ. a := ∗ ; ? − b ≤ τ. a ≤ A ) ∪ (? τ. v ≥ m . r ; τ. a := ∗ ; ? − b ≤ τ. a ≤ 0) atp : if ( m . e − τ. p ≤ SB ∨ rbc . message = emergency ) τ. a := − b : t := 0; ( τ. p ′ = τ. v , τ. v ′ = τ. a , t ′ = 1 ∧ τ. v ≥ 0 ∧ t ≤ ε ) drive : ( rbc . message := emergency ) ∪ ( m := ∗ ; ? m . r > 0) rbc Task Verify safety Andr´ e Platzer, Jan-David Quesel ETCS: A Case Study in Formal Verification ICFEM 2009 8 / 19

  25. Parametric Skeleton of ETCS ETCS skel : ( train ∪ rbc ) ∗ : spd ; atp ; drive train spd : (? τ. v ≤ m . r ; τ. a := ∗ ; ? − b ≤ τ. a ≤ A ) ∪ (? τ. v ≥ m . r ; τ. a := ∗ ; ? − b ≤ τ. a ≤ 0) atp : if ( m . e − τ. p ≤ SB ∨ rbc . message = emergency ) τ. a := − b : t := 0; ( τ. p ′ = τ. v , τ. v ′ = τ. a , t ′ = 1 ∧ τ. v ≥ 0 ∧ t ≤ ε ) drive : ( rbc . message := emergency ) ∪ ( m := ∗ ; ? m . r > 0) rbc Task Verify safety Specification [ ETCS skel ]( τ. p ≥ m . e → τ. v ≤ m . d ) Andr´ e Platzer, Jan-David Quesel ETCS: A Case Study in Formal Verification ICFEM 2009 8 / 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend