estimating differential quantities using polynomial
play

Estimating Differential Quantities using Polynomial fitting of - PDF document

Estimating Differential Quantities using Polynomial fitting of Osculating Jets Frederic.Cazals@inria.fr Marc.Pouget@inria.fr 1 Smooth surfaces, point clouds, meshes, Differential quantities Smooth surfaces &


  1. Estimating Differential Quantities using Polynomial fitting of Osculating Jets Frederic.Cazals@inria.fr Marc.Pouget@inria.fr 1

  2. � � � � � � Smooth surfaces, point clouds, meshes, Differential quantities Smooth surfaces & Differential quantities: surface area tangent plane, principal curvatures and directions special points [MORE Difficult!] —umbilics, parabolic lines, curvature lines, ridges, geodesics, medial axis, skeleton Sampled surfaces & Applications: surface reconstruction, segmentation smoothing, re-meshing parameterization 2

  3. Smooth surface. . . or not? Phenomenological ambiguity: mesh or smooth surface? Ill-defined notions: smooth mesh, sharp edge, normal,. . . Questions raised: differential operators convergence & robustness issues 3

  4. � � � Differential Geometries Classical (smooth) diff. geom. Diff. geom. for non-smooth objects normal cycle theory Clarke’s theory Filipov’s theory 4

  5. ✆ � � ☎ ✄ � ✄ ✁ Smooth Diff Geom & Convergence issues The angular defect exple � ∑ ✂ Ak G 2 π γ i η 2 Bk 2 Ck 2 m M i ✂ 2 x 2 y 2 Triangulations of z ☎✞✝ 2 Convergence wishes: pointwise, global, various topologies local cv, usual topology: this paper “global” cv, topology of currents: Cohen-Steiner & Mor- van, ACM SoCG’03 5

  6. � � ☎ ✆ ✄ ✄ ☎ ✄ ✄ Estimating Differential Properties using Polynomial fitting Osculating quadric: not unique Thm . There are 9 Euclidean conics and 17 Euclidean quadrics. Manifolds and Height functions ✂ x ✂ k 1 x 2 1 k 2 y 2 f � y ax by hot 2 Polynomial Fitting & Variants two (or more) stages methods interpolation - approximation 6

  7. ✄ ☎ ✆ ☎ ✄ ✄ ☛ ☎ ✝ � ☎ ☎ ✆ ☎ � ☎ ✞ ✂ ✄ ☎ ✞ ✟ ✠ ✆ ✆ ☎ ✆ ☎ ✄ ✟ Height functions and jets Height funtion = jet + h.o.t: ✂ x ✂ x ✂ x ✁☎✁ n ✂ ✂✁✄✁ ✆ 1 f � y J B � y O � y � n with n k ✂ x ✂ x ✂ x ∑ ∑ � j x k j y j J B � y H B � y � H B � y B k � n � k � k j j ✝ 0 k ✝ 1 ✂ d ✂ d ✝ 2 coefficients N n 1 2 Differential Quantities Tangent plane t B 2 B 2 n S � B 10 � B 01 � 1 1 10 01 Second order info using the Weingarten map . . . ✡ B 10 � B 01 � B 20 � B 11 � B 02 Higher order info Monge form of the surface 7

  8. ☎ ✆ ☎ ✄ ✆ ☎ ✁ ☎ ☎ ✆ ☎ ✆ ☎ ✆ ☎ � ✟ ✆ ☎ ✟ ✟ � ✂ ✄ ☎ ☎ ✟ ✟ ✟ ✟ ✆ � ✆ ✟ ☎ ✟ ☎ ✟ � ✆ ☎ ☎ ✆ ✄ ✞ ✆ ✞ ✟ Sample points, Interpolation, Approximation ✂ x i ✂ x i Input: N points p i � y i � z i f � y i Interpolation: find a n -jet J A � n : ✂ x i ✂ x i ✂ x i ✂ x i ✁✄✁ n ✟ N ✁☎✁ ✆ 1 f � y i J B � y i O � y i J A � y i i 1 � n � n Least-Square Approximation: find a n -jet J A � n minimizing: N ✂ J A ✂ x i ✂ x i ∑ 2 � y i f � y i � n i ✝ 1 Convergence issues Sequence of converging points ✂ x i ✂ x i p i a i h � y i b i h � z i f � y i a i and b i arbitrary, h 0 —uniform convergence ✂ r ✂ h Wish: A i j B i j O Thm. ✂ h n ✂ k ✂ j ✞ k ✆ 1 A k B k O 0 � n 0 � k j � j j � j 8

  9. ✟ ✟ � � ☎ ✟ ✟ ✆ ✟ ✟ ✆ ☎ ☎ ✆ ✟ ✟ ☎ � ✆ ✟ ✟ ☎ ✄ ✟ ✆ ✂ ✟ � ☎ ✆ ✆ Matrix set-up of the problem � n jet of the height function sought J B � n answer of the interpo./approx. problem J A N n -Vector of unknowns ✂ A 0 t A � A 1 � A 0 � A 0 � 0 � 0 � 1 � n ✂ x i N -vector of ordinates, i.e. with z i ☎ : f � y i ✂ z 1 ✂ J B ✂ x i ✂ x i ✁☎✁ n ✁☎✁ t ✆ 1 B � z 2 � z N � y i O � y i ☎ i � n ✝ 1 � N � ✁�✁�✂� ✄ N n matrix Vandermonde N ✂ 1 � x 2 � x i y n ✞ 1 � y n M � x i � y i i i ☎ i i ✝ 1 � N � ✂�✁�✁� Interpolation N n , linear square system; solve MA N B ✁✄✁ MA ✁☎✁ Approximation N n , rectangular system; solve min N B 2 9

  10. ✁ ✂ ✆ ☛ ☎ ✟ ✟ ✟ � ✆ ✆ ☎ ✆ ✄ � ✟ ✆ ✟ ✆ ☎ ✟ ✟ � ✝ ✄ Poised Bivariate Lagrange Interpolation ✂ Π n Π n : space of bivar. polyn. of degree ✁ n ✆ 2 n ; dim N n n ✡ x 1 nodes X � x N 2 f : Interpolation problem poised for X : ✁ P ✂ x i ✂ x i Π n for any f ☎ unique P f � i 1 � N Almost Degenerate cases 10

  11. ☎ � � � ✆ ✆ Approximation ✁✄✁ MA ✂ M ✁☎✁ 2 has a unique solution min B rank N n ✁✄✁ MA Residual of the system ρ ✁✄✁ B 2 11

  12. ✝ ✟ � ✁ ✝ ✁ ☎ ✁ � ✟ ✠ ✟ ☎ ✂ � ✆ ☎ ✄ ☎ ✆ ☎ � � ✝ ✆ � ✄ ✑ ☞ ☎ ☎ ✝ � ✠ ✆ ✝ ✟ � ✟ ✟ ✟ ✝ ☎ ☎ ✆ � ✝ SVD & Condition Numbers � n matrix A : m Thm: SVD decomposition of a orthogonal matrices U and V : ✂ σ p ✂ m U t A V diag � sigma 1 � p min � n σ p dots sigma 1 0 Cond. Numbers and Jet fitting, Relative Errors Condition numbers = magnification factor Error on solution = Error on input conditioning. ✂ M ✁✄✁ M ✁☎✁ M ✁✄✁ ✁✄✁ κ 2 σ n ✝ σ 1 ✞ 1 of M ; interpol : 2 2 ✂ M ✂ M ✁✄✁ MX κ 2 κ 2 2 ρ with ρ ✁✄✁ approx.: B 2 the residual Thm. X and ✄ X solutions of: ∆ M ∆ B , Interpol.: MX B and ✆ M ✞✠✟ X B ∆ M ∆ B Approx.: ✡☛✡ 2 and min min ✡☛✡ MX B ✡☛✡✌✆ M ✞✍✟ X ☞✎✆ B ✞✏✡☛✡ 2 with ε 0 such that ✁✄✁ ∆ M ✁✄✁ ∆ B ✁✄✁ M ✁✄✁ B ✂ M ✁✄✁ ✁☎✁ ε ✁☎✁ ✁✄✁ ε � εκ 2 1 2 2 2 2 ☎ ✓✒ ✁✄✁ X ✁☎✁ X ✁✄✁ ✁✄✁ ε conditioning Then: ✄ X 2 2 12

  13. ☎ ✟ ✟ ✆ ✆ ✆ � ✟ ✟ � � ✆ � ✟ ✟ ✟ ✆ � ✆ ✟ Pre-conditioning the Vandermonde system Vandermonde matrix: ✂ 1 � x 2 � x i y n ✞ 1 � y n M � x i � y i ☎ i i i i ✝ 1 � N � ✂�✁�✁� Column-scaling. x i s, y i s being of order h , scale x k i y l i by h k ✆ l New system: ✂ 1 � h 2 � h n � h n D diag � h � h ✟ e ✟ X ✞ 1 A MA B MDD B M � Y B � i DY Alternatives: Newton polynomials 13

  14. ✟ ✆ ✄ � ✟ ✞ ✟ ✆ ✟ ✆ ✞ � ✟ ✟ ✟ ✆ ☎ ✆ ☎ � � ✆ ☎ ☎ � ✁ ✆ � ✄ ✝ ✟ ✆ Surfaces and curves: selected results ✂ x i ✂ h ✂ h Hypothesis N points p i ☎ , with x i � y i � z i O � y i O Thm.[Interpolation or Approximation] The coefficients of de- ✂ h n ✞ k ✆ 1 gree k of the Taylor expansion of f to accuracy O ☎ : ✂ h n ✂ k ✂ j ✞ k ✆ 1 A k B k O 0 � n 0 � k j � j j � j If interpolation is used and the origin is one of the samples then 0 . A 0 B 0 � 0 � 0 ✂ ε lfs Rmk. If lfs is bounded from above and h ☎ . . . O Corrolary ✂ h n normal coeffs estimated with accuracy O ☎ , coeffs of I, II, shape operator: estimated with accuracy ✂ h n ✞ 1 O Curves Thm.[Interpolation, details omitted]: ✂ n ✁ A k � n n ☎ n ✆ 1 ✁ c ε ✞ k ✆ 1 2 B k 2 d 14

  15. � � � � � � Algorithm Collecting N n samples Mesh case: ith rings PC case: local mesh, Power Diag. in the tangent plane Fitting problem, degenerate cases —almost singular matrices Interpolation: choose samples differently Approximation: decrease degree, increase # pts Differential quantities Order two info.: Weingarten map of the height func. Higher order info: retrieve the Monge form of the surface 15

  16. ✄ � ✟ ☎ ✟ ✆ ☎ ☎ � ✄ � ☎ ✁ ✁ � ✄ ☎ ☎ ✁ ✁ ☎ ☎ ☎ ☎ ✁ ✄ � ✟ ✟ ☎ ✟ ✆ � ✟ ✆ ✄ ✞ ✆ ✟ ✞ Convergence results: experimental Illustration Thm. ✂ h n ✂ k ✂ j ✞ k ✆ 1 A k B k O 0 � n 0 � k j � j j � j Discrepancy δ on a k th order diff. quantity ✁ F A ✂ A ✂ B δ δ c h n ✞ k ✆ 1 F B � k � k Conv. over a sequence of finer samples — h 0 ✂ 1 ✂ 1 ✂ n ✂ 1 ✝ δ log log ✝ c k 1 ☎ log ✝ h Conv. when increasing the degree n ✂ 1 ✂ 1 ✝ δ ✂ n log log ✝ c ✂ 1 ✂ 1 k 1 log ✝ h log ✝ h 16

  17. ✆ ✆ ☎ ☎ ✄ Convergence 0.8 0.6 6 0.4 5 4 0.2 3 2 0 –1 –1 1 0 –0.5 –0.5 –1 –1 –0.5 –0.5 0 0 0 0 0.5 0.5 0.5 0.5 ✂ u ✂ u 1 1 ✞ v 2 and g 1 1 ✟ 1 e 2 u ✆ v 4 u 2 2 v 2 f � v 0 � v 35 4 deg 1 N_av deg 2 kmin_av deg 3 kmax_av 3.5 30 deg 4 N_max deg 5 kmin_max deg 6 3 kmax_max 25 deg 7 deg 8 log(1/delta)/log(1/h) deg 9 2.5 log(1/delta) 20 2 15 1.5 10 1 5 0.5 0 0 1 1.5 2 2.5 3 3.5 4 4.5 1 2 3 4 5 6 7 8 9 log(1/h) degree Exponential model: Con- Polynomial model: Conver- vergence of the normal es- gence of normal and curva- timate wrt h, approximation ture wrt the degree of the fitting approximation fitting 17

  18. Illustrations 18

  19. Illustrations 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend