esign esign the standard model
play

esign esign The Standard Model e ( e ) ( ) ( ) Flavor - PowerPoint PPT Presentation

IS THE NEUTRINO A MAJORANA OR A DIRAC PARTICLE ? Ettore Fiorini, Bologna June 17 2005 = or Lepton number conservation or violation Has neutrino a finite mass 100 % chirality


  1. IS THE NEUTRINO A MAJORANA OR A DIRAC PARTICLE ? Ettore Fiorini, Bologna June 17 2005 ν=ν− or ν � ν− Lepton number conservation or violation Has neutrino a finite mass 100 % chirality ν ν− → → ⇐ ⇐ ⇐ ⇐ � � � � esign esign

  2. The Standard Model ν e (ν � e ) ν µ (ν � µ ) ν τ (ν �� τ ) Flavor conservation or violation Neutrino oscillations need m ν � 0 ν e ν µ ν e ν τ 2 2 ∆ m (eV ) L(km / m ) 2 2 ab ν ν − > θ P( - ) sin 2 sin ( 1 . 27 ) a b E ( GeV/ MeV )

  3. Neutrino oscillations have been observed with solar, atmosperic and reactor neutrinos

  4. ATMOSPHERIC NEUTRINOS Superkamiokande and MACRO Reactor and long baseline experiments Neutrino factories

  5. 2 � � 0 2 But oscillation experiments only indicate that m ν 0 But oscillation experiments only indicate that m ν ν ν ν ν ν ν to determine < m m ν > => double beta decay to determine < ν > => double beta decay ν ν ν ν ν ν 1. (A,Z) => (A,Z+2) + 2 e - + 2 ν ν e ¯ ν ν 2. (A,Z) => (A,Z+2) + 2 e - + χ χ ( …2,3 χ χ χ χ χ χ) 3. (A,Z) => (A,Z+2) + 2 e - (A,Z+1) (A,Z) (A,Z+2)

  6. u u e - d d e - W ν ν ν ν e W ν e ν W e e - d ν e ν ν ν W d e - u u 0 ν ν - ββ ν ν ββ decay ββ ββ 2 ν ν - ββ ββ decay ν ν ββ ββ Neutrinoless ββ decay

  7. Neutrinoless ββ decay would imply a non zero effective majorana neutrino mass as indicated by oscillation experiments

  8. Experimental approaches Geochemical experiments i82 Se = > 82 Kr, 96 Zr = > 96 Mo (?) , 128 Te = > 128 Xe (non confirmed), 130 Te = > 130 Te Radiochemical experiments 238 U = > 238 Pu (non confirmed) Direct experiments Source ≠ ≠ detector ≠ ≠ Source = detector (calorimetric) detector e - source e - e - detector Source ≠ Detector e -

  9. Cryogenic detectors heat bath Thermal sensor absorber crystal Incident particle

  10. V T 3 = C 1944 ( )( ) J/K V Τ Vm D 2 ∆ = ξ E k C T V ∆Ε @ 5 keV ~100 mk ~ 1 mg <1 eV ~ 5 eV @ 2 MeV ~10 mk ~ 1 kg <10 eV ~ keV

  11. Recent experiments on ββ0ν τ τ 1/2 τ τ 0 ν ν (y) ν ν Experim Isotope m* ee (eV) Range m ee > 1.9 × × 10 25 × × < 0.35 < 0.3 – 2.5 Heidelberg – Moscow 2001 76 Ge > 1.57 × × 10 25 × × < 0.38 < 0.3 – 2.5 IGEX 2002 > 2.1 × × 10 23 × × Mi DBD – ν ν 2002 ν ν 130 Te < 1.5 < 0.9 – 2.1 > 7.7 × × × × 10 24 128 Te ��� < 1.0 < 1.0 – 4.4 Bernatowicz et al. 1993 (GEO) > 1.2 × × 10 24 × × 136 Xe < 1.0 < 0.8 – 2.4 Belli et al. 2003 > 1.7 × × 10 23 × × 116 Cd < 1.7 < 1.6 – 5.5 Bizzeti et al. 2003 > 5.5 × × 10 22 × × 100 Mo < 4.8 < 1.4 - 256 Ejiri et al. 2001 > 1.8 × × 10 22 × × 48 Ca < 6.0 Osawa I. et al. 2002 * Staudt, Muto, Klapdor-Kleingrothaus Europh. Lett 13 (1990) 31 Τ = 1.2 x 1025 a => <m ν > ~ 0.44 eV The “Klapdor ” effect =>

  12. Two new experiments NEMO III e CUORICINO

  13. Searches with thermal detectors CUORE R&D (Hall C) CUORE (Hall A) Cuoricino (Hall A)

  14. Crescita della massa dei bolometri total mass [kg] year

  15. � Search for the 2 β | o ν in 130 Te (Q=2529 keV) and other rare events � At Hall A in the Laboratori Nazionali del Gran Sasso (LNGS) � 18 crystals 3x3x6 cm3 + 44 crystals 5x5x5 cm3 = 40.7 kg of TeO2 � Operation started in the beginning of 2003 => ~ 4 months � Background .18±.01 c /kev/ kg/ a ν ( 130 Te) > 1.8x 10 24 y <m ν 0 ν ν ν � T 1/2 ν > .2 -1. 1 ν ν Klapdor 0.1 – 0.9 2 modules, 9 detector each, 11 modules, 4 detector each, crystal dimension 3x3x6 cm 3 crystal dimension 5x5x5 cm 3 crystal mass 330 g crystal mass 790 g 9 x 2 x 0.33 = 5.94 kg of TeO 2 4 x 11 x 0.79 = 34.76 kg of TeO 2

  16. Present Cuoricino region Arnaboldi et al., submitted to PRL, hep-ex/0501034 (2005). Possible evidence (best value 0.39 eV) With the same matrix elements the Cuoricino limit is 0.53 eV “quasi” degeneracy � � ≈ � �� ≈ � � Inverse hierarchy ∆ � � �� �� ∆ � � ��� Direct hierarchy ∆ � � �� �� ∆ � � ��� Cosmological disfavoured (WMAP) region Feruglio F. , Strumia A. , Vissani F. hep-ph/0201291

  17. The CUORE project ��� �������������� ��������� �� �� ����� ��� � �������� 750 kg TeO 2 => 600 kg Te => 203 kg 130 Te ������������������������������ ��

  18. ����������� The discovery of neutrino oscillations to which ∆ m 2 � 0 Masatoshi contributed so much exists and ∆ ∆ ∆ We need to determine the Majorana nature of the neutrino and the absolute value of <m ν ν > ν ν Neutrinoless double beta decay would indicate not only lepton number violation , but also < < < m ν < ν > > � 0 > > ν ν This process has been indicated by an experiment (Klapdor) with a value of ~0.44 eV but not confirmed by CUORICINO Future experiments on neutrinoless double beta decay will allow to reach the sensitivity predicted by oscillations Their peculiar multiplinarity involves nuclear and e subnuclear physics , astrophysics , radioactivity, material science, geochronology etc

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend