equations for plug flow nutrient s s x y z t cell density
play

Equations for Plug Flow Nutrient S = S ( x, y, z, t ) cell density u - PDF document

Equations for Plug Flow Nutrient S = S ( x, y, z, t ) cell density u = u ( x, y, z, t ) satisfy: r 2 yz S v ( r ) S x 1 uf u ( S ) d S x S xx + d S S t = r 2 d u x u xx + d u u t = yz u v ( r ) u x + u [ f u ( S ) k


  1. Equations for Plug Flow Nutrient S = S ( x, y, z, t ) cell density u = u ( x, y, z, t ) satisfy: r ∇ 2 yz S − v ( r ) S x − γ − 1 uf u ( S ) d S x S xx + d S S t = r ∇ 2 d u x u xx + d u u t = yz u − v ( r ) u x + u [ f u ( S ) − k ] in the tubular reactor Ω = { ( x, y, z ) : 0 < x < L, y 2 + z 2 < R 2 } with velocity profile: v ( r ) = V max [1 − ( r R ) 2 ] , and Monod uptake kinetics: mS f u ( S ) = a + S. Useful notation: L u u = d u x u xx + d u r ∇ 2 yz u − v ( r ) u x 1

  2. Danckwerts’ Boundary Conditions at x = 0: v ( r ) S 0 − d S = x S x + v ( r ) S − d u 0 = x u x + v ( r ) u, at x = L : d S x S x − v ( r ) S = − v ( r ) S, i.e., S x = 0 = 0 u x See R. Aris, ”Mathematical Modeling, a chem- ical engineers perspective”, Academic Press, 1999. 2

  3. No Wall Growth Single Species in the fluid: L S S − γ − 1 uf u ( S ) = S t L u u + u [ f u ( S ) − k ] u t = at x = 0: v ( r ) S 0 − d S = x S x + v ( r ) S − d u 0 = x u x + v ( r ) u, at x = L : S x = u x = 0 on the wall r = R S r = 0 u r = 0 . 3

  4. Radial Boundary Conditions ( r = R ) wall-attached bacterial fraction w = w ( x, R cos θ, R sin θ, t ) ∈ [0 , w max ] satisfies: w t = w [ f w ( S ) G ( W ) − k w − β ] + αu (1 − W ) , where W = w/w max . radial boundary conditions for S: − d S r S r = γ − 1 wf w ( S ) radial boundary conditions for u: − d u r u r = αu (1 − W ) − wf w ( S )[1 − G ( W )] − βw. 4

  5. With Wall Growth wall-attached bacterial fraction on r = R w = w ( x, R cos θ, R sin θ, t ) ∈ [0 , w max ] satisfies: w t = w [ f w ( S ) G ( W ) − k w − β ] + αu (1 − W ) , where W = w/w max . radial boundary conditions for S: − d S r S r = γ − 1 wf w ( S ) radial boundary conditions for u: − d u r u r = αu (1 − W ) − wf w ( S )[1 − G ( W )] − βw. 5

  6. Summary of Single-Population Model in the fluid: L S S − γ − 1 uf u ( S ) S t = L u u + u [ f u ( S ) − k ] u t = on the wall r = R w t = w [ f w ( S ) G ( W ) − k w − β ] + αu (1 − W ) . at x = 0: v ( r ) S 0 − d S = x S x + v ( r ) S − d u 0 = x u x + v ( r ) u, at x = L : S x = u x = 0 on the wall r = R − d S γ − 1 wf w ( S ) = r S r − d u r u r = αu (1 − W ) − w [ f w ( S )(1 − G ( W )) + β ] . 6

  7. Many-Populations with Wall Growth in the fluid L S S − γ − 1 u i f ui ( S ) � S t = i i L i u i + u i [ f ui ( S ) − k i ] u i = t on the wall r = R γ − 1 − d S w i f wi ( S ) � r S r = i i − d i r u i α i u i (1 − W ) = r − w i [ f wi ( S )(1 − G i ( W )) + β i ] w i w i [ f wi ( S ) G i ( W ) − k wi − β i ] = t + α i u i (1 − W ) . i w i /w max . at x = 0 where W = � v ( r ) S 0 − d S = x S x + v ( r ) S − d i x u i x + v ( r ) u i , 0 = at x = L S x = u i x = 0 . 7

  8. Linear Stability of Washout Steady State S ≡ S 0 , u ≡ 0 , w ≡ 0 . Linear stability analysis: S 0 + ǫ exp( λt )¯ S = S u = ǫ exp( λt )¯ u w = ǫ exp( λt ) ¯ w 0 < | ǫ | << 1, leads to the non-standard eigen- value problem L S ¯ S − γ − 1 ¯ uf u ( S 0 ) λ ¯ = S L u ¯ u [ f u ( S 0 ) − k ] λ ¯ = u + ¯ u w [ f w ( S 0 ) G (0) − k w − β ] + α ¯ λ ¯ w = ¯ u with homogeneous Danckwerts’ b.c. ( x = 0 , L ) and radial b.c. on r = R : S r + γ − 1 ¯ d S wf w ( S 0 ) r ¯ 0 = d u w [ f w ( S 0 )(1 − G (0)) + β ] . 0 = r ¯ u r + α ¯ u − ¯ 8

  9. Principal Eigenvalue There exists a real simple eigen- Theorem: value λ ∗ > f w ( S 0 ) G (0) − k w − β belonging to the interval with endpoints: L f w ( S 0 ) − k w , f u ( S 0 ) − k − λ V max where − λ < 0 is the principal eigenvalue of the (scaled ¯ x = x/L, ¯ r = r/R ) eigenvalue problem: r 2 ) u ¯ r − 1 (¯ λu = θ x u ¯ x − (1 − ¯ x + θ r ¯ ru ¯ r ) ¯ r , x ¯ r 2 ) u, 0 = − θ x u ¯ x + (1 − ¯ ¯ x = 0 0 = u ¯ x , ¯ x = 1 u ¯ = 0 , r = 1 , ¯ r θ x = ( d u x /L 2 )( L/V max ) , θ r = ( d u r /R 2 )( L/V max ). Corresponding to λ ∗ is an eigenvector (¯ S, ¯ u, ¯ w ) satisfying ¯ S < 0, ¯ u > 0 in Ω and ¯ w > 0 in r = R . If λ ∗ < 0 then washout is stable in the linear approximation; if λ ∗ > 0 then it is unstable. 9

  10. Global Stability of Washout Theorem: If both L f u ( S 0 ) − k − λ < 0 , f w ( S 0 ) − k w < 0 , V max then λ ∗ < 0 and � � t →∞ ( lim Ω udV + r = R wdA ) = 0 . Conjecture: The result remains valid if only λ ∗ < 0. 10

  11. Population steady state The equations for a steady state are L S S − γ − 1 uf u ( S ) 0 = L u u + u [ f u ( S ) − k ] , 0 = in Ω 0 = w [ f w ( S ) G ( W ) − k w − β ] + αu (1 − W ) , r = R. Danckwerts’ boundary conditions at x = 0 , L and radial boundary conditions: d S − γ − 1 wf w ( S ) r S r = d u r u r = − αu (1 − W ) + w [ f w ( S )(1 − G ( W )) + β ] . Theorem: Let λ ∗ > 0 and f w ( S 0 ) G (0) − k w − β � = 0. Then there exists a radially symmet- ric steady state solution ( S, u, w ) satisfying (in cylindrical coordinates) 0 < S ( x, r ) ≤ S 0 , u ( x, r ) > 0 , and 0 < w ( x ) ≤ w max . 11

  12. Criterion for Survival λ ∗ > 0 if both f w ( S 0 ) − k w > 0 and L f u ( S 0 ) − k − λ > 0 V max hold, or if f w ( S 0 ) G (0) − k w − β > 0 holds. In case of no wall growth ( α = w = 0), L λ ∗ = f u ( S 0 ) − k − λ V max so middle inequality suffices for survival. 12

  13. Effects of Influx of Antibiotic Concentration A = A ( x, y, z, t ) satisfies: d A x A xx + d A r ∇ 2 A t = yz A − v ( r ) A x d A 0 = r A r , r = R (impenetrable biofilm) v ( r ) A 0 − d A = x A x + v ( r ) A, x = 0 (influx of A) 0 = x = L. A x , As for substrate in absence of bacteria, A ( x, y, z, t ) → A 0 , t → ∞ . If planktonic cell death rate k = k ( A 0 ) , k ′ > 0, then effect on λ ∗ is minimal since: f w ( S 0 ) G (0) − k w − β < λ ∗ where we assume adherent cell death rate k w independent of A . Contrast to case of no wall growth ( α = w = 0) where L λ ∗ = f u ( S 0 ) − k ( A 0 ) − λ. V max 13

  14. A pair of eigenvalue problems L i u + au, λu = Ω λw = bw + αu, r = R 0 = d r u r + αu − cw, r = R (1) 0 = − d x u x + v ( r ) u, x = 0 0 = x = L u x , The corresponding adjoint problem is given by: λu = L i u + au, Ω λw = bw + cu, r = R 0 = d r u r + αu − αw, r = R (2) 0 = d x u x + v ( r ) u, x = L 0 = x = 0 u x , here, a, b, c, α are real constants. 14

  15. In order to see in what sense (2) is adjoint to (1) we make the following observation. Proposition Let u ∈ C 2 (Ω) ∩ C 1 (Ω) satisfy the Danckw- erts’ boundary conditions at x = 0 , L , ˆ u ∈ C 2 (Ω) ∩ C 1 (Ω) satisfy the adjoint Danckwerts’ boundary conditions at x = 0 , L , u, w satisfy the inhomogeneous radial boundary condition h = d r u r + αu − cw, r = R and ˆ u, ˆ w satisfy the homogeneous adjoint radial boundary condition in (2). Then we have � � Ω ( L i u )ˆ udV + r = R ( bw + αu ) ˆ wdA � � = Ω ( L i ˆ u ) udV + r = R h ˆ u + w ( b ˆ w + c ˆ u ) dA If h ≡ 0, then we obtain the adjoint relation of (2) and (1). 15

  16. Principal Eigenvalue Theorem Let α, c > 0. Then there exists a real simple eigenvalue λ ∗ > b of (1) satisfying: b + c < λ ∗ ≤ a − λ i , if b + c < a − λ i b + c = λ ∗ , if b + c = a − λ i a − λ i < λ ∗ < b + c, if b + c > a − λ i Corresponding to eigenvalue λ ∗ is an eigenvec- tor (¯ u, ¯ w ) satisfying ¯ u > 0 in Ω and ¯ w > 0 in r = R . If λ is any other eigenvalue of (1) cor- responding to an eigenvector ( u, w ) ≥ 0, then λ = λ ∗ and ( u, w ) = c (¯ u, ¯ w ) for some c > 0. ¯ u, ¯ w are axially symmetric, i.e., in cylindrical coordinates ( r, θ, x ), ¯ u = ¯ u ( r, x ) , ¯ w = ¯ w ( x ). λ ∗ is also an eigenvalue of (2) corresponding to an eigenvector ( u, w ) = ( ψ, χ ). Moreover, ( ψ, χ ) has the same uniqueness up to scalar multiple, positivity and symmetry properties as does (¯ u, ¯ w ). 16

  17. bacterial growth is limited by supplied substrate Let ( ψ i , χ i ) be the PEV corresponding to the eigenvalue λ i of (2) in the case that a = 0 , b = − β i , α = α i , c = β i , d r = d i r , d x = d i x . Normalize ( ψ i , χ i ) by requiring ψ i , χ i ≤ φ ≤ 1. By PEV Theorem and the fact that b + c = 0, we have λ i < 0. Theorem: A Priori Estimates S ( t, x, y, z ) ≤ S 0 , lim sup t →∞ uniformly in ( x, y, z ) ∈ Ω and � � γ − 1 Ω u i ψ i dV � lim sup t →∞ ( Ω SφdV + [ i i � r = R w i χ i dA ]) + 2 πS 0 � R 0 rv ( r ) dr ≤ min j { λ S , − λ j + k j , − λ j + k wj } 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend