enumeration martingales random graphs mikhail isaev
play

Enumeration. Martingales. Random graphs. Mikhail Isaev School of - PowerPoint PPT Presentation

Enumeration. Martingales. Random graphs. Mikhail Isaev School of Mathematical Sciences, Monash University Discrete Maths Research Group talk August 28, 2017 . . . . . .. . . . . . . .. . . . . . . .. . . . . . . .. . . .. . . . .


  1. Enumeration. Martingales. Random graphs. Mikhail Isaev School of Mathematical Sciences, Monash University Discrete Maths Research Group talk August 28, 2017 . . . . . .. . . . . . . .. . . . . . . .. . . . . . . .. . . .. . . . . .

  2. Introduction Subgraph counts Asymptotic enumeration Cumulant expansion Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mikhail Isaev (Monash University) Discrete Maths talk August 28, 2017 2 / 29

  3. It is clear for the following cases: when Z is small; when Z X 1 X n , where X 1 X n are independent and small. For our purposes we needed: when Z f X 1 X n , where X 1 X n are independent; when Z is a complex martingale. Introduction Subgraph counts Asymptotic enumeration Cumulant expansion Expectation of the exponential function We are interested in estimates for E e Z , where Z is a complex random variable. E e Z ≈ e E Z E e Z ≈ e E Z + 1 2 E ( Z − E Z ) 2 . and . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mikhail Isaev (Monash University) Discrete Maths talk August 28, 2017 3 / 29

  4. For our purposes we needed: when Z f X 1 X n , where X 1 X n are independent; when Z is a complex martingale. Introduction Subgraph counts Asymptotic enumeration Cumulant expansion Expectation of the exponential function We are interested in estimates for E e Z , where Z is a complex random variable. E e Z ≈ e E Z E e Z ≈ e E Z + 1 2 E ( Z − E Z ) 2 . and It is clear for the following cases: when Z is small; when Z = X 1 + · · · + X n , where X 1 , . . . , X n are independent and small. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mikhail Isaev (Monash University) Discrete Maths talk August 28, 2017 3 / 29

  5. Introduction Subgraph counts Asymptotic enumeration Cumulant expansion Expectation of the exponential function We are interested in estimates for E e Z , where Z is a complex random variable. E e Z ≈ e E Z E e Z ≈ e E Z + 1 2 E ( Z − E Z ) 2 . and It is clear for the following cases: when Z is small; when Z = X 1 + · · · + X n , where X 1 , . . . , X n are independent and small. For our purposes we needed: when Z = f ( X 1 , . . . , X n ) , where X 1 , . . . , X n are independent; when Z is a complex martingale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mikhail Isaev (Monash University) Discrete Maths talk August 28, 2017 3 / 29

  6. Introduction Subgraph counts Asymptotic enumeration Cumulant expansion Random vectors with independent components Theorem (I., McKay, 2017) Let X = ( X 1 , . . . , X n ) be a random vector with independent components taking values in Ω = Ω 1 × · · · × Ω n . Let f : Ω → C . Suppose, for any 1 ≤ j ̸ = k ≤ n, x , x j | f ( x ) − f ( x j ) | ≤ α, sup x , x j , x k , x jk | f ( x ) − f ( x j ) − f ( x k ) + f ( x jk ) | ≤ ∆ , sup where the suprema is over all x , x j , x k , x jk ∈ Ω such that x,x j and x k , x jk di�er only in the j-th coordinate, x,x k and x j , x jk di�er only in the k-th coordinate. (A) If α = o ( n − 1 / 2 ) , then E e f ( X ) = e E f ( X ) ( 1 + O ( n α 2 ) ) . (B) If α = o ( n − 1 / 3 ) and ∆ = o ( n − 4 / 3 ) , then E e f ( X ) = e E f + 1 2 E ( f − E f ) 2 ( 1 + O ( n α 3 + n 2 α 2 ∆) e 2 Var ℑ f ( X ) ) 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mikhail Isaev (Monash University) Discrete Maths talk August 28, 2017 4 / 29

  7. Introduction Subgraph counts Asymptotic enumeration Cumulant expansion Random permutations Theorem (Greenhill, I., McKay, 2017+) Let X = ( X 1 , . . . , X n ) be a uniform random element of S n and f : S n → C . Suppose, for any distinct j , a ∈ { 1 , . . . , n } , sup | f ( ω ) − f ( ω ◦ ( ja )) | ≤ α, ω ∈ S n and, for any distinct j , k , a , b ∈ { 1 , . . . , n } , sup | f ( ω ) − f ( ω ◦ ( ja )) − f ( ω ◦ ( kb )) + f ( ω ◦ ( ja )( kb )) | ≤ ∆ , ω ∈ S n (A) If α = o ( n − 1 / 2 ) , then E e f ( X ) = e E f ( X ) ( 1 + O ( n α 2 ) ) . (B) If α = o ( n − 1 / 3 ) and ∆ = o ( n − 4 / 3 ) , then E e f ( X ) = e E f + 1 1 + O ( n α 3 + n 2 α 2 ∆) e 2 E ( f − E f ) 2 ( 2 Var ℑ f ( X ) ) 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mikhail Isaev (Monash University) Discrete Maths talk August 28, 2017 5 / 29

  8. Introduction Subgraph counts Asymptotic enumeration Cumulant expansion Random subsets Let B n , m denote the set of subsets of { 1 , . . . , n } of size m. Theorem (Greenhill, I., McKay, 2017+) Let X be a uniform random element of B n , m , m ≤ n / 2, and f : B n , m → C . Suppose, for any A ∈ B n , m and a ∈ A, j / ∈ A, | f ( A ) − f ( A ⊕ { j , a } ) | ≤ α, and, for any distinct a , b ∈ A, j , k / ∈ A, | f ( A ) − f ( A ⊕ { j , a } ) − f ( A ⊕ { k , b } ) + f ( A ⊕ { j , k , a , b } ) | ≤ ∆ , (A) If α = o ( m − 1 / 2 ) , then E e f ( X ) = e E f ( X ) ( 1 + O ( m α 2 ) ) . (B) If α = o ( m − 1 / 3 ) and ∆ = o ( m − 4 / 3 ) , then E e f ( X ) = e E f + 1 2 E ( f − E f ) 2 ( 1 + O ( m α 3 + m 2 α 2 ∆) e 2 Var ℑ f ( X ) ) 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mikhail Isaev (Monash University) Discrete Maths talk August 28, 2017 6 / 29

  9. Concentration results. For a real random variable X, by the Markov inequality, 1 tc e tX Pr e tX e tc Pr X c e it X X it X X Asymptotic normality. Let Z X , t X . Then, 2 t 2 2 Z 2 1 e Z e Z Z t and e 2 Subgraph counts in random graphs with given degrees. 3 Asymptotic enumeration by complex-analytic methods. 4 Introduction Subgraph counts Asymptotic enumeration Cumulant expansion Four applications in the random graph theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mikhail Isaev (Monash University) Discrete Maths talk August 28, 2017 7 / 29

  10. For a real random variable X, by the Markov inequality, tc e tX Pr e tX e tc Pr X c e it X X it X X Asymptotic normality. Let Z X , t X . Then, 2 t 2 2 Z 2 1 e Z e Z Z t and e 2 Subgraph counts in random graphs with given degrees. 3 Asymptotic enumeration by complex-analytic methods. 4 Introduction Subgraph counts Asymptotic enumeration Cumulant expansion Four applications in the random graph theory Concentration results. 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mikhail Isaev (Monash University) Discrete Maths talk August 28, 2017 7 / 29

  11. it X X it X X Asymptotic normality. Let Z X , t X . Then, 2 t 2 2 Z 2 1 e Z e Z Z t and e 2 Subgraph counts in random graphs with given degrees. 3 Asymptotic enumeration by complex-analytic methods. 4 Introduction Subgraph counts Asymptotic enumeration Cumulant expansion Four applications in the random graph theory Concentration results. For a real random variable X, by the Markov inequality, 1 Pr ( X > c ) = Pr ( e tX > e tc ) ≤ e − tc E e tX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mikhail Isaev (Monash University) Discrete Maths talk August 28, 2017 7 / 29

  12. it X X it X X Let Z X , t X . Then, t 2 2 Z 2 1 e Z e Z Z t and e 2 Subgraph counts in random graphs with given degrees. 3 Asymptotic enumeration by complex-analytic methods. 4 Introduction Subgraph counts Asymptotic enumeration Cumulant expansion Four applications in the random graph theory Concentration results. For a real random variable X, by the Markov inequality, 1 Pr ( X > c ) = Pr ( e tX > e tc ) ≤ e − tc E e tX . . . Asymptotic normality. 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mikhail Isaev (Monash University) Discrete Maths talk August 28, 2017 7 / 29

  13. Subgraph counts in random graphs with given degrees. 3 Asymptotic enumeration by complex-analytic methods. 4 Introduction Subgraph counts Asymptotic enumeration Cumulant expansion Four applications in the random graph theory Concentration results. For a real random variable X, by the Markov inequality, 1 Pr ( X > c ) = Pr ( e tX > e tc ) ≤ e − tc E e tX . . . ( ) Asymptotic normality. Let Z = it X − E X it X − E X Var X , φ ( t ) = E exp . Then, 2 √ √ Var X 2 E ( Z − E Z ) 2 = e − t 2 / 2 . E e Z = φ ( t ) e E Z + 1 and . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mikhail Isaev (Monash University) Discrete Maths talk August 28, 2017 7 / 29

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend