an introduction to free probability 2 noncrossing
play

An introduction to free probability 2. Noncrossing partitions and - PowerPoint PPT Presentation

An introduction to free probability 2. Noncrossing partitions and free cumulants Wojtek M lotkowski (Wroc law) Villetaneuse, 11.03.2014 WM () Free probability 03.03.2014 1 / 19 Definition. A partition of a set X is a family of


  1. An introduction to free probability 2. Noncrossing partitions and free cumulants Wojtek M� lotkowski (Wroc� law) Villetaneuse, 11.03.2014 WM () Free probability 03.03.2014 1 / 19

  2. Definition. A partition of a set X is a family π of subsets of X such that � π = X and if U , V ∈ π then either U = V or U ∩ V = ∅ . Elements of π are called blocks of π . The class of partitions of the set { 1 , 2 , . . . , n } will be denoted P ( n ). The cardinality of P ( n ) is counted by Bell numbers B n : 1 , 1 , 2 , 5 , 15 , 52 , 203 , 877 , 4140 , 21147 , . . . (sequence A000110 in OEIS). Recurrence relation: B 0 = 1, n � n � � B n +1 = B k . k k =0 The exponential generating function: ∞ B n n ! z n = exp( e z − 1) . � B ( z ) = n =0 The number of partitions in P ( n ) consisting on k blocks: Stirling � n � numbers of the second kind : . k WM () Free probability 03.03.2014 2 / 19

  3. Definition. A partition π ∈ P ( n ) is called noncrossing if for every 1 ≤ k 1 < k 2 < k 3 < k 4 ≤ n we have implication: k 1 , k 3 ∈ U ∈ π, k 2 , k 4 ∈ V ∈ π = ⇒ U = V . NC ( n )-the class of noncrossing partitions of the set { 1 , 2 , . . . , n } . � 2 n +1 1 � The number of elements in NC ( n ): the Catalan numbers : 2 n +1 : n 1 , 1 , 2 , 5 , 14 , 42 , 132 , 429 , 1430 , 4862 , 16796 , . . . (sequence A000108 in OEIS). They satisfy recurrence: C 0 = 1 and n � for n ≥ 0 . C n +1 = C i C n − i i =0 WM () Free probability 03.03.2014 3 / 19

  4. The generating function: ∞ 2 C n z n = � 1 + √ 1 − 4 z . C ( z ) = n =0 The number of π ∈ NC ( n ) having k blocks: the Narayana numbers : � n �� � 1 n . k − 1 n k For π ∈ NC ( n ) define sequence Λ( π ) = ( x 1 , x 2 , . . . , x n ) as follows: � | U | − 1 if k is the first element of a block U ∈ π , x k = − 1 otherwise. Note that the sequence Λ( π ) has the following properties: 1. x k ∈ {− 1 , 0 , 1 , 2 , 3 , . . . } , 2. x 1 + x 2 + . . . + x k ≥ 0 for 1 ≤ k ≤ n , 3. x 1 + x 2 + . . . + x n = 0. Proposition. The map Λ is a bijection of NC ( n ) onto the class of sequences satisfying (1-2-3). WM () Free probability 03.03.2014 4 / 19

  5. Classical cumulants Let X be a random variable, µ its distribution, a probability measure on R . We assume that X is bounded. Moments of X , µ : � t n d µ ( t ) . m n ( X ) = m n ( µ ) := E ( X n ) = R Cumulants κ n ( µ ) = κ n of X and µ are defined as ∞ t n log(E( e tX )) = � κ n n ! n =1 Then for independent random variables X ∼ µ , Y ∼ ν we have κ n ( X + Y ) = κ n ( X ) + κ n ( Y ) (1) or κ n ( µ ∗ ν ) = κ n ( µ ) + κ n ( ν ) . WM () Free probability 03.03.2014 5 / 19

  6. Relation between moments and cumulants: � � m n ( µ ) = κ | V | ( µ ) . (2) π ∈ P ( n ) V ∈ π Examples: The normal distribution N ( a , σ 2 ), with density − ( x − a ) 2 1 � � √ exp 2 σ 2 σ 2 π we have κ 1 = a , κ 2 = σ 2 and κ n = 0 for n ≥ 3. The Poisson distribution ∞ λ k exp( − λ ) � δ k , k ! k =0 so that Pr( X = k ) = λ k exp( − λ ) , we have κ n = λ for all n ≥ 1. k ! WM () Free probability 03.03.2014 6 / 19

  7. Definition. A (noncommutative) probability space is a pair ( A , φ ), where A is a complex unital ∗ -algebra and φ is a state on A , i.e. a linear map A → C such that φ ( 1 ) = 1 and φ ( a ∗ a ) ≥ 0 for all a ∈ A . Definition: A family {A i } i ∈ I of unital (i.e. 1 ∈ A i ) subalgebras is called free if φ ( a 1 a 2 . . . a m ) = 0 whenever m ≥ 1, a 1 ∈ A i 1 , . . . , a m ∈ A i m , i 1 , . . . , i m ∈ I , i 1 � = i 2 � = . . . � = i m and φ ( a 1 ) = . . . = φ ( a m ) = 0. Main example: Unital free product. Let ( A i , φ i ), i ∈ I , noncommutative probability spaces. Put A 0 i := Ker φ i . Then the unital free product A = ∗ i ∈ I A i can be represented as � A 0 i 1 ⊗ A 0 i 2 ⊗ . . . ⊗ A 0 i m = C 1 ⊕ A 0 . A := C 1 ⊕ (3) m ≥ 1 i 1 ,..., im ∈ I i 1 � = i 2 � = ... � = im with the state defined by φ ( 1 ) = 1 and φ ( a ) = 0 for a ∈ A 0 . Then {A i } i ∈ I is a free family in ( A , φ ) WM () Free probability 03.03.2014 7 / 19

  8. Suppose a k ∈ A 1 , b k ∈ A 2 . We write a k = α k 1 + a 0 k , where α k = φ ( a k ), φ ( a 0 k ) = 0, b k = β k 1 + b 0 k where β k = φ ( b k ), φ ( b 0 k ) = 0, Then ( α 1 1 + a 0 1 )( β k 1 + b 0 � � φ ( a 1 b 1 ) = φ k ) = α 1 β 1 + α 1 φ ( b 0 1 ) + β 1 φ ( a 0 a 0 1 b 0 � � 1 ) + φ = α 1 β 1 = φ ( a 1 ) φ ( b 1 ) . k In a similar way: φ ( a 1 b 1 a 2 ) = φ ( a 1 a 2 ) φ ( b 1 ) and φ ( a 1 b 1 a 2 b 2 ) = φ ( a 1 a 2 ) φ ( b 1 ) φ ( b 2 ) + φ ( a 1 ) φ ( a 2 ) φ ( b 1 b 2 ) − φ ( a 1 ) φ ( a 2 ) φ ( b 1 ) φ ( b 2 ) . WM () Free probability 03.03.2014 8 / 19

  9. Proposition. Assume, that a ∈ A 1 , b ∈ A 2 , and A 1 , A 2 are free. Then the moments φ (( a + b ) n ) of a + b depend only on the moments φ ( a n ) of a and the moments φ ( b n ) of b . Distribution of a self-adjoint element a = a ∗ ∈ A is the probability measure µ on R satisfying: � t n d µ ( t ) , φ ( a n ) = n = 1 , 2 , . . . , R so that φ ( a n ) are moments of µ . If a , b are free and the distribution of a , b is µ, ν respectively then the distribution of a + b will be denoted µ ⊞ ν - the additive free convolution. We want to compute the moments φ (( a + b ) n ) from φ ( a n ) and φ ( b n ). WM () Free probability 03.03.2014 9 / 19

  10. For a ∈ A we define its free cumulants r n ( a ) by the relation: � � φ ( a n ) = r | V | ( a ) . (4) V ∈ π π ∈ NC ( n ) In particular φ ( a ) = r 1 ( a ) , φ ( a 2 ) = r 1 ( a ) 2 + r 2 ( a ) , φ ( a 3 ) = r 1 ( a ) 3 + 3 r 1 ( a ) r 2 ( a ) + r 3 ( a ) , The moment sequence φ ( a n ) and the cumulant sequence r n ( a ) determine each other. We are going to prove Theorem. If a , b ∈ A are free (i.e. belong to free subalgebras) then r n ( a + b ) = r n ( a ) + r n ( b ) . (5) WM () Free probability 03.03.2014 10 / 19

  11. Examples. 1. Catalan numbers: if � 2 n + 1 � 1 φ ( a n ) = then r n ( a ) = 1 for all n ≥ 1. (6) n 2 n + 1 2. More generally: Fuss/Raney numbers: if � pn + r � r φ ( a n ) = then (7) n pn + r � ( p − r ) n + r � r r n ( a ) = (8) ( p − r ) n + r . n W. M� lotkowski, Fuss-Catalan numbers in noncommutative probability, Documenta Mathematica 15 (2010). WM () Free probability 03.03.2014 11 / 19

  12. 3. Aerated Catalan numbers: if � 1 � � 2 k +1 1 � if n = 2 k , if n = 2, φ ( a n ) = k 2 k +1 then r n ( a ) = (9) 0 if n � = 2. 0 if n odd, 4. More generally, aerated Fuss/Raney numbers, if � � pk + r r � if n = 2 k , φ ( a n ) = k pk + r (10) 0 if n is odd, then � � ( p − 2 r ) k + r r � if n = 2 k , ( p − 2 r ) k + r r n ( a ) = k (11) 0 if n is odd. WM () Free probability 03.03.2014 12 / 19

  13. Free Gaussian law γ a , r : 1 � 4 r 2 − ( x − a ) 2 χ [ a − 2 r , a +2 r ] ( x ) dx , (12) 2 π r 2 then r 1 ( γ a , r ) = a , r 2 ( γ a , r ) = r 2 and r n ( γ a , r ) = 0 for r ≥ 3. Free Poisson law ̟ t : � 4 t − ( x − 1 − t ) 2 χ [(1 −√ t ) 2 , (1+ √ t ) 2 ] ( x ) dx max { 1 − t , 0 } δ 0 + (13) 2 π x then r n ( ̟ t ) = t for all n ≥ 1. WM () Free probability 03.03.2014 13 / 19

  14. Cuntz algebra Let H be a Hilbert space and define the full Fock space of H : ∞ � H ⊗ m . F ( H ) := C Ω ⊕ m =1 Fix an orthonormal basis e i , i ∈ I . Then the vectors e i 1 ⊗ e i 2 ⊗ . . . ⊗ e i m , m ≥ 0, i 1 , i 2 , . . . , i m ∈ I , form an orthonormal basis of F ( H ). The vector corresponding to the empty word ( m = 0) will be denoted by Ω. For i ∈ I define operator ℓ i : ℓ i e i 1 ⊗ . . . ⊗ e i m = e i ⊗ e i 1 ⊗ . . . ⊗ e i m in particular ℓ i Ω = e i , and its adjoint: � e i 2 ⊗ . . . ⊗ e i m if m ≥ 1 and i 1 = i ℓ ∗ i e i 1 ⊗ e i 2 ⊗ . . . ⊗ e i m = 0 otherwise. WM () Free probability 03.03.2014 14 / 19

  15. Note the relation � 1 if i = j ℓ ∗ i ℓ j = (14) 0 otherwise. Define: A - the unital algebra generated by all ℓ i , ℓ ∗ i , i ∈ I , A i - the unital subalgebra generated by ℓ i , ℓ ∗ i . For a ∈ A we put φ ( a ) := � a Ω , Ω � . By (14), A i is the linear span of i ) n : m , n ≥ 0 } , { ℓ m i ( ℓ ∗ while A is the linear span of { ℓ i 1 ℓ i 2 . . . ℓ i m ℓ ∗ j 1 ℓ ∗ j 2 . . . ℓ ∗ j n : m , n ≥ 0 } . Proposition. 1. If m + n > 0 then ℓ i 1 ℓ i 2 . . . ℓ i m ℓ ∗ j 1 ℓ ∗ j 2 . . . ℓ ∗ � � φ = 0 j n 2. The family {A i } i ∈ I is free in ( A , φ ). WM () Free probability 03.03.2014 15 / 19

  16. Lemma. Suppose that x 1 , x 2 , . . . , x n ∈ {− 1 , 0 , 2 , 3 , . . . } and denote ℓ − 1 := ℓ ∗ i . Then i φ ( ℓ x n 1 . . . ℓ x 2 1 ℓ x 1 1 ) = 1 iff the sequence ( x 1 , x 2 , . . . , x n ) satisfies conditions (1-2-3) from page 4 and 1 . . . ℓ x 2 1 ℓ x 1 φ ( ℓ x n 1 ) = 0 otherwise. Proposition. Let ∞ � T 1 = ℓ ∗ α k ℓ k − 1 1 + 1 k =1 for some α n ∈ C . Then α k are free cumulants of T 1 : � � φ ( T n 1 ) = α | V | . π ∈ NC ( n ) V ∈ π WM () Free probability 03.03.2014 16 / 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend