recent advances in mandelbrot martingales theory
play

Recent advances in Mandelbrot martingales theory Julien Barral, - PowerPoint PPT Presentation

Recent advances in Mandelbrot martingales theory Julien Barral, Universit e Paris Nord Advances in Fractals and Related Topics, CUHK, September 2012 J. Barral Recent advances in Mandelbrot martingales theory Mandelbrot martingales Let = {


  1. Recent advances in Mandelbrot martingales theory Julien Barral, Universit´ e Paris Nord Advances in Fractals and Related Topics, CUHK, September 2012 J. Barral Recent advances in Mandelbrot martingales theory

  2. Mandelbrot martingales Let Σ = { 0 , 1 } N + and for n ≥ 1, Σ n = { 0 , 1 } n . W : positive rv. with E W = 1 / 2. { W ( w ) } σ ∈ � n ≥ 1 Σ n independent rv’s equidistributed with W . � Y n = W ( σ | 1 ) W ( σ | 2 ) · · · W ( σ | n ) is a positive martingale σ ∈ Σ n J. Barral Recent advances in Mandelbrot martingales theory

  3. Mandelbrot martingales Let Σ = { 0 , 1 } N + and for n ≥ 1, Σ n = { 0 , 1 } n . W : positive rv. with E W = 1 / 2. { W ( w ) } σ ∈ � n ≥ 1 Σ n independent rv’s equidistributed with W . � Y n = W ( σ | 1 ) W ( σ | 2 ) · · · W ( σ | n ) is a positive martingale σ ∈ Σ n J. Barral Recent advances in Mandelbrot martingales theory

  4. Mandelbrot martingales Let Y = lim n →∞ Y n . Writing � � Y n +1 = W ( j ) × W ( j · σ | 1 ) W ( j · σ | 2 ) · · · W ( j · σ | n ) j ∈{ 0 , 1 } σ ∈ Σ n = W (0) Y n (0) + W (1) Y n (1) yields Y = W (0) Y (0) + W (1) Y (1) , where { W ( j ) , Y ( j ) } j ∈{ 0 , 1 } are independent, W ( j ) ∼ W , Y ( j ) ∼ Y . Moreover, P ( Y > 0) ∈ { 0 , 1 } . Using this recursively yields the Mandelbrot random measure on [0 , 1] µ ( I σ ) = W ( σ | 1 ) W ( σ | 2 ) · · · W ( σ | | σ | ) Y ( σ ) . Theorem (Kahane (1976)) The following assertions are equivalent: (1) P ( Y > 0) = 1 ; (2) ( Y k ) k ≥ 1 is uniformly integrable; (3) E W log W < 0 . J. Barral Recent advances in Mandelbrot martingales theory

  5. Mandelbrot martingales Let Y = lim n →∞ Y n . Writing � � Y n +1 = W ( j ) × W ( j · σ | 1 ) W ( j · σ | 2 ) · · · W ( j · σ | n ) j ∈{ 0 , 1 } σ ∈ Σ n = W (0) Y n (0) + W (1) Y n (1) yields Y = W (0) Y (0) + W (1) Y (1) , where { W ( j ) , Y ( j ) } j ∈{ 0 , 1 } are independent, W ( j ) ∼ W , Y ( j ) ∼ Y . Moreover, P ( Y > 0) ∈ { 0 , 1 } . Using this recursively yields the Mandelbrot random measure on [0 , 1] µ ( I σ ) = W ( σ | 1 ) W ( σ | 2 ) · · · W ( σ | | σ | ) Y ( σ ) . Theorem (Kahane (1976)) The following assertions are equivalent: (1) P ( Y > 0) = 1 ; (2) ( Y k ) k ≥ 1 is uniformly integrable; (3) E W log W < 0 . J. Barral Recent advances in Mandelbrot martingales theory

  6. Mandelbrot martingales Let Y = lim n →∞ Y n . Writing � � Y n +1 = W ( j ) × W ( j · σ | 1 ) W ( j · σ | 2 ) · · · W ( j · σ | n ) j ∈{ 0 , 1 } σ ∈ Σ n = W (0) Y n (0) + W (1) Y n (1) yields Y = W (0) Y (0) + W (1) Y (1) , where { W ( j ) , Y ( j ) } j ∈{ 0 , 1 } are independent, W ( j ) ∼ W , Y ( j ) ∼ Y . Moreover, P ( Y > 0) ∈ { 0 , 1 } . Using this recursively yields the Mandelbrot random measure on [0 , 1] µ ( I σ ) = W ( σ | 1 ) W ( σ | 2 ) · · · W ( σ | | σ | ) Y ( σ ) . Theorem (Kahane (1976)) The following assertions are equivalent: (1) P ( Y > 0) = 1 ; (2) ( Y k ) k ≥ 1 is uniformly integrable; (3) E W log W < 0 . J. Barral Recent advances in Mandelbrot martingales theory

  7. Mandelbrot martingales Let Y = lim n →∞ Y n . Writing � � Y n +1 = W ( j ) × W ( j · σ | 1 ) W ( j · σ | 2 ) · · · W ( j · σ | n ) j ∈{ 0 , 1 } σ ∈ Σ n = W (0) Y n (0) + W (1) Y n (1) yields Y = W (0) Y (0) + W (1) Y (1) , where { W ( j ) , Y ( j ) } j ∈{ 0 , 1 } are independent, W ( j ) ∼ W , Y ( j ) ∼ Y . Moreover, P ( Y > 0) ∈ { 0 , 1 } . Using this recursively yields the Mandelbrot random measure on [0 , 1] µ ( I σ ) = W ( σ | 1 ) W ( σ | 2 ) · · · W ( σ | | σ | ) Y ( σ ) . Theorem (Kahane (1976)) The following assertions are equivalent: (1) P ( Y > 0) = 1 ; (2) ( Y k ) k ≥ 1 is uniformly integrable; (3) E W log W < 0 . J. Barral Recent advances in Mandelbrot martingales theory

  8. Mandelbrot martingales. Normalization and related equation Natural questions arise: (Mandelbrot, 1974) When E W log W ≥ 0, does there exist A n > 0 1 such that ( Y n / A n ) converges to a non-trivial limit Z , at least in distribution? If so A n / A n +1 converges to A , 0 < A < ∞ , and the limit satisfies d Z = A W (0) Z (0) + 1 W (1) Z (1) (Durrett and Liggett, 1983) In general, what are the non-trivial 2 solutions to d ( E ) Z = W (0) Z (0) + W (1) Z (1) ? Are there natural multifractal measures associated with solutions 3 of ( E )? J. Barral Recent advances in Mandelbrot martingales theory

  9. Mandelbrot martingales. Normalization and related equation Natural questions arise: (Mandelbrot, 1974) When E W log W ≥ 0, does there exist A n > 0 1 such that ( Y n / A n ) converges to a non-trivial limit Z , at least in distribution? If so A n / A n +1 converges to A , 0 < A < ∞ , and the limit satisfies d Z = A W (0) Z (0) + 1 W (1) Z (1) (Durrett and Liggett, 1983) In general, what are the non-trivial 2 solutions to d ( E ) Z = W (0) Z (0) + W (1) Z (1) ? Are there natural multifractal measures associated with solutions 3 of ( E )? J. Barral Recent advances in Mandelbrot martingales theory

  10. Mandelbrot martingales. Normalization and related equation Natural questions arise: (Mandelbrot, 1974) When E W log W ≥ 0, does there exist A n > 0 1 such that ( Y n / A n ) converges to a non-trivial limit Z , at least in distribution? If so A n / A n +1 converges to A , 0 < A < ∞ , and the limit satisfies d Z = A W (0) Z (0) + 1 W (1) Z (1) (Durrett and Liggett, 1983) In general, what are the non-trivial 2 solutions to d ( E ) Z = W (0) Z (0) + W (1) Z (1) ? Are there natural multifractal measures associated with solutions 3 of ( E )? J. Barral Recent advances in Mandelbrot martingales theory

  11. The derivative martingale in the critical case. Suppose that E W log W = 0. For all β ∈ [0 , 1), set � W β E W β = 1 / 2 , W β = 2 E W β . It satisfies . E W β log W β < 0 Define � n = − d W β ( σ | 1 ) W β ( σ | 2 ) · · · W β ( σ | n ) and Y ′ Y n ( β ) = d β Y n ( β ) . σ ∈ Σ n Theorem (Biggins-Kyprianou (1997), Liu (2000)) If E W 1+ ǫ < ∞ for some ǫ > 0 , then ( Y ′ n ) converges almost surely to Y ′ , Y ′ = W (0) Y ′ (0) + W (1) Y ′ (1) , E Y ′ = ∞ . This yields a.s. on [0 , 1] the “critical” measure µ ′ ( I σ ) = W ( σ | 1 ) W ( σ | 2 ) · · · W ( σ | | σ | ) Y ′ ( σ ) . J. Barral Recent advances in Mandelbrot martingales theory

  12. The derivative martingale in the critical case. Suppose that E W log W = 0. For all β ∈ [0 , 1), set � W β E W β = 1 / 2 , W β = 2 E W β . It satisfies . E W β log W β < 0 Define � n = − d W β ( σ | 1 ) W β ( σ | 2 ) · · · W β ( σ | n ) and Y ′ Y n ( β ) = d β Y n ( β ) . σ ∈ Σ n Theorem (Biggins-Kyprianou (1997), Liu (2000)) If E W 1+ ǫ < ∞ for some ǫ > 0 , then ( Y ′ n ) converges almost surely to Y ′ , Y ′ = W (0) Y ′ (0) + W (1) Y ′ (1) , E Y ′ = ∞ . This yields a.s. on [0 , 1] the “critical” measure µ ′ ( I σ ) = W ( σ | 1 ) W ( σ | 2 ) · · · W ( σ | | σ | ) Y ′ ( σ ) . J. Barral Recent advances in Mandelbrot martingales theory

  13. The derivative martingale in the critical case. Suppose that E W log W = 0. For all β ∈ [0 , 1), set � W β E W β = 1 / 2 , W β = 2 E W β . It satisfies . E W β log W β < 0 Define � n = − d W β ( σ | 1 ) W β ( σ | 2 ) · · · W β ( σ | n ) and Y ′ Y n ( β ) = d β Y n ( β ) . σ ∈ Σ n Theorem (Biggins-Kyprianou (1997), Liu (2000)) If E W 1+ ǫ < ∞ for some ǫ > 0 , then ( Y ′ n ) converges almost surely to Y ′ , Y ′ = W (0) Y ′ (0) + W (1) Y ′ (1) , E Y ′ = ∞ . This yields a.s. on [0 , 1] the “critical” measure µ ′ ( I σ ) = W ( σ | 1 ) W ( σ | 2 ) · · · W ( σ | | σ | ) Y ′ ( σ ) . J. Barral Recent advances in Mandelbrot martingales theory

  14. The derivative martingale in the critical case. Suppose that E W log W = 0. For all β ∈ [0 , 1), set � W β E W β = 1 / 2 , W β = 2 E W β . It satisfies . E W β log W β < 0 Define � n = − d W β ( σ | 1 ) W β ( σ | 2 ) · · · W β ( σ | n ) and Y ′ Y n ( β ) = d β Y n ( β ) . σ ∈ Σ n Theorem (Biggins-Kyprianou (1997), Liu (2000)) If E W 1+ ǫ < ∞ for some ǫ > 0 , then ( Y ′ n ) converges almost surely to Y ′ , Y ′ = W (0) Y ′ (0) + W (1) Y ′ (1) , E Y ′ = ∞ . This yields a.s. on [0 , 1] the “critical” measure µ ′ ( I σ ) = W ( σ | 1 ) W ( σ | 2 ) · · · W ( σ | | σ | ) Y ′ ( σ ) . J. Barral Recent advances in Mandelbrot martingales theory

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend