enhancement of rydberg atom interactions using dc and ac
play

Enhancement of Rydberg atom interactions using dc and ac Stark - PowerPoint PPT Presentation

Enhancement of Rydberg atom interactions using dc and ac Stark shifts Parisa Bohlouli-Zanjani


  1. Enhancement of Rydberg atom interactions using dc and ac Stark shifts Parisa Bohlouli-Zanjani �������������������������������������������������������������� �������������������������������� University of Virginia, Department of Physics 6/27/2011

  2. Objective � Enhancement of interatomic interactions by electric field induced resonant energy transfer (RET) A + A ! B + C Motivations � Determining unknown atomic energy levels by dc field induced RET spectra � Using ac field induced RET for energy level determination where dc field can not be used � RET can be utilized in the implementation of dipole blockade 2

  3. Summary of the materials to be discussed � Rydberg atoms � Experimental methodology � Magneto-Optical Trap (MOT), Selective Field Ionization (SFI) � Laser frequency stabilization � Dipole-Dipole interactions, RET � dc electric-field-induced RET � Estimation of g series quantum defect � Observation of ac electric-field-induced RET 3

  4. Summary of the materials to be discussed � Rydberg atoms � Experimental methodology � Magneto-Optical Trap (MOT), Selective Field Ionization (SFI) � Laser frequency stabilization � Dipole-Dipole interactions, RET � dc electric-field-induced RET � Estimation of g series quantum defect � Observation of ac electric-field-induced RET 4

  5. Rydberg atoms loosely bound electron circling ionic core. � Rydberg constant (13.5 eV) Ionization continuum Infinitely ionization potential many bound states quantum defect for Na these states have long lifetimes (eg. 17p of Na: 50 µ s ). � properties scale with n and can be exaggerated . � 5

  6. Summary of the materials to be discussed � Rydberg atoms � Experimental methodology � Magneto-Optical Trap (MOT), Selective Field Ionization (SFI) � Laser frequency stabilization � Dipole-Dipole interactions, RET � dc electric-field-induced RET � Estimation of g series quantum defect � Observation of ac electric-field-induced RET 6

  7. Experimental Methodology Form cold Rb atoms in a MOT for studies � between stationary atom � 1 mm 3 , 300 µ K , Rydberg atoms: 10 7 cm -3 Rydberg atom excitation using 480nm � frequency doubled Ti:sapphire laser Measurement and compensation of stray E and B fields using mwave transitions � between Rydberg states Do experiment … � Verify excitation using SFI technique � 10 Hz repetition rate � 7

  8. Selective Field Ionization (SFI) detection of Rydberg atoms Field ionization pulse 400 slowly rising FIP ion signal (47s 1/2 & 47p 1/ 2 states) 300 200 voltage MCP signal Voltage (V) 100 47p 1/2 47p 1/2 � Use SFI to determine state 0 distribution in the trap. -100 47s 1/2 47s 1/2 -200 -6 0 2 4 6 8 10 12x10 time ( µ s) Time (s) 8

  9. Rydberg Atom Excitation Ionization Continuum np ns nd Infinitely many bound states 46d 6s Energy ~ 480 nm 5p 3/2 Frequency doubled Ti:sapphire laser 5d ~ 780 nm Cooling & trapping transitions (Diode Laser) 5s 9

  10. Summary of the materials to be discussed � Rydberg atoms � Experimental methodology � Magneto-Optical Trap (MOT), Selective Field Ionization (SFI) � Laser frequency stabilization � Dipole-Dipole interactions, RET � dc electric-field-induced RET � Estimation of g series quantum defect � Observation of ac electric-field-induced RET 10

  11. Optical Transfer Cavity Stabilization using Tunable Sidebands of RF Current-Modulated Injection-Locked Diode Lasers Objective � Stabilize lasers at frequencies where direct locking to a reference line is not possible Motivation � High resolution optical spectroscopy for laser cooled Rydberg atom excitation.

  12. Review / Alternative approaches Absolute frequency reference (Barger 1969) � ref. laser � Beat note locking trgt. PD � Practical up to a certain frequency laser difference feedback Scanning transfer cavity (TC) (Lindsay 1991, � ref. laser Rossi 2002) TC trgt. � Scanning rate limits the maximum error laser correction feedback � Sensitive to low frequency vibrations PC � Complexity of the fringe comparison ref. laser AOM Stabilized TC (Burghardt 1979, Plusquellic 1996) � (EOM) trgt. � Frequency shift using EOM or AOM laser TC feedback

  13. A general frequency stabilization technique � Fabry--Perot TC stabilized using a tunable sideband from a current modulated injection locked diode laser. � Frequency shifts without using AOMs or EOMs. � Not limited to certain wavelengths � Tuning frequency with RF precision.

  14. Experimental setup : PBS PBS fiber FR master laser λ /2 λ /2 λ λ λ λ λ λ 780nm λ /2 λ λ λ Rb PS slave locking -f m +f m laser control fiber PD circuit RF f m λ /2 PD R. Kowalski et al., λ /2 PBS Rev. Sci. Instrum. PBS 72, 2532 (2001). transfer cavity piezo fiber control Ti:Sapphire ring doubler to MOT circuit laser- 960 nm 480 nm 14

  15. Rydberg atom excitation ( 85 Rb) 46d 5/2 0.6 (d) Averaged MCP signal (V) 46d 5/2 46d 3/2 119 MHz 46d 3/2 0.4 59.5 MHz (c) (c) (a) 0.2 (b) (d) (b) (a) 5p 3/2 0.0 385 THz cooling laser 780nm 5s 1/2 0 20 40 60 80 100 Target laser (960nm) frequency + offset (MHz) Autler –Townes splitting : B. K. Teo et al., Phys. Rev. A. 68, 053407 (2003). 15

  16. 140 Frequency stability 120 Frequency fluctuation of the � 100 target laser (Ti:sapphire, 960 nm) (a) unlocked MBR freq drift (MHz) (a) unlocked 80 � (a) unlocked 140 MHz � (b) locked < 0.25 MHz 60 1.0 drift (MHz) 0.0 40 -1.0 0 30 00 time(s) � Not limited to certain wavelengths 20 � Tuning frequency with RF 0 precision . (b) locked � Frequency shifts without using -20 AOMs or EOMs. 0 1000 2000 3000 time(s) 16

  17. Summary of the materials to be discussed � Rydberg atoms � Experimental methodology � Magneto-Optical Trap (MOT), Selective Field Ionization (SFI) � Laser frequency stabilization � Dipole-Dipole interactions, RET � dc electric-field-induced RET � Estimation of g series quantum defect � Observation of ac electric-field-induced RET 17

  18. Properties of Rydberg atoms - 3 n ¤ = n ¡ ± l P. Filipovicz et al. , Optica Acta, 32 , 1105 (1985) •

  19. Electric Dipole-Dipole Interactions between Rydberg Atoms ¹ B ~ ¹ A ~ V dd = ~ ¹ A ¢~ ¹ B ¡ 3 (~ ¹ A ¢~ n)(~ ¹ B ¢~ n) ^ n ^ R 3 A B R A B � dipole-dipole interaction strong for Rydberg states -- even over long distances. � atoms temporarily excited to Rydberg states strongly interact due to dipole-dipole interaction -- but don’t interact when in ground state.

  20. Resonant Energy Transfer (RET) through dipole-dipole interactions A + A ! A + A ! B + C B + C

  21. Summary of the materials to be discussed � Rydberg atoms � Experimental methodology � Magneto-Optical Trap (MOT), Selective Field Ionization (SFI) � Laser frequency stabilization � Dipole-Dipole interactions, RET � dc electric-field-induced RET � Estimation of g series quantum defect � Observation of ac electric-field-induced RET 21

  22. Resonance condition may be achieved using Stark effect: -298 20p -300 After excitation of 20s states: -314 20s Energy -316 20p signal (cm -1 ) -330 200 210 220 240 Electric field (V/cm) -332 19p -334 0 200 300 100 Electric field (V/cm) 22

  23. Achieving resonance condition in Rb Rb Stark map - energies relative to 44d 5/2 44d 5=2 + 44d 5=2 ! 42f 5=2 + 46p 3=2 23

  24. Mismatch as a function of n nd 5=2 + nd 5=2 ! (n + 2)p 3=2 + (n ¡ 2)f Consider the process: ¢ E m i sm at ch = E f ¡ E i ¢ E m i sm at ch Energy shifts of this magnitude can be easily obtained using the ac or dc Stark effect Energies determined using quantum defects from: J. N. Han et al. , PRA 74, 054502 (2006); W. H. Li et al. , PRA 67, 052502 (2003) 24

  25. Observation of dc field induced RET at n = 44 44d 5=2 + 44d 5=2 ! 46p 3=2 + 42f ���� � �� 25

  26. Observation of dc field induced RET at n = 32 32d 5=2 + 32d 5=2 ! 34p 5=2 + 30g

  27. Resonant electric fields can be used to determine energy levels 32d 5=2 + 32d 5=2 ! 34p 5=2 + 30g unknown!! known energies ± g (n = 30) = 0:00405(6) 27

  28. Lower n by 1 and process cannot be tuned into resonance nd 5=2 + nd 5=2 ! (n + 2)p 3=2 + (n ¡ 2)f 5=2;7=2 n = 44 n = 43 28

  29. Can an ac field be used? Perturbative ac Stark effect Perturbative dc Stark effect X X ¢ E n = 1 E n s j < nj ¹ z js> j 2 j < nj ¹ z js> j 2 2" 2 ¢ E n = " 2 E 2 n s ¡ (~! ) 2 z E n s z s s ������������������ ��������������� ���$����� �������������� ������ E ns = E n ¡ E s ! > E ns s s ������ ������ ( ������"�� ) ! < E ns " z " z ω ���������!�"������������������������#

  30. Summary of the materials to be discussed � Rydberg atoms � Experimental methodology � Magneto-Optical Trap (MOT), Selective Field Ionization (SFI) � Laser frequency stabilization � Dipole-Dipole interactions, RET � dc electric-field-induced RET � Estimation of g series quantum defect � Observation of ac electric-field-induced RET 30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend