engm 875 project
play

ENGM 875 Project Vibrations in a MEMS Electrostatic Energy Converter - PowerPoint PPT Presentation

ENGM 875 Project Vibrations in a MEMS Electrostatic Energy Converter Dan White University of NebraskaLincoln December 14, 2007 Dan White (University of NebraskaLincoln) ENGM 875 December 14, 2007 1 / 30 Introduction Introduction


  1. ENGM 875 Project Vibrations in a MEMS Electrostatic Energy Converter Dan White University of Nebraska–Lincoln December 14, 2007 Dan White (University of Nebraska–Lincoln) ENGM 875 December 14, 2007 1 / 30

  2. Introduction Introduction Motivation Background Dan White (University of Nebraska–Lincoln) ENGM 875 December 14, 2007 2 / 30

  3. Introduction Motivation Low-power (wireless) sensor nodes Environmental sensing Temperature Light Hazardous material detection Chemical Nuclear Machine monitoring Tire pressure Bearing health Dan White (University of Nebraska–Lincoln) ENGM 875 December 14, 2007 3 / 30

  4. Introduction Background Requirements Long service life Low costs Low/zero maintenance Dan White (University of Nebraska–Lincoln) ENGM 875 December 14, 2007 4 / 30

  5. Introduction Background Power sources Need ≈ 10 ′ s µ W for years . Solar Chemical: battery, fuel cell Mechanical vibration Thermal: Peltier-Seebeck effect Charge storage: capacitor Dan White (University of Nebraska–Lincoln) ENGM 875 December 14, 2007 5 / 30

  6. Introduction Background Power source comparison Dan White (University of Nebraska–Lincoln) ENGM 875 December 14, 2007 6 / 30

  7. Problem Problem Statement General converter Electrostatic conversion Dan White (University of Nebraska–Lincoln) ENGM 875 December 14, 2007 7 / 30

  8. Problem General converter General converter m ¨ z + ( b e + b m )˙ z + kz = − m ¨ y Dan White (University of Nebraska–Lincoln) ENGM 875 December 14, 2007 8 / 30

  9. Problem General converter Equation of motion Refinement: m ¨ z + f m ( z , ˙ z ) + f e ( z , ˙ z ) + kz = − m ¨ y f m geometry/material dependant, minimize f e controllable Dan White (University of Nebraska–Lincoln) ENGM 875 December 14, 2007 9 / 30

  10. Problem Electrostatic conversion Electrostatic conversion Mechanical system damping from electrical energy conversion 1 q 1 q 2 Coulomb force: F c = d 2 4 πǫ 0 → Vary charge separation Model mechanical-electrical energy transfer position/velocity - voltage/current Dan White (University of Nebraska–Lincoln) ENGM 875 December 14, 2007 10 / 30

  11. Problem Electrostatic conversion Out-of-plane gap closing converter Current converter type: Dan White (University of Nebraska–Lincoln) ENGM 875 December 14, 2007 11 / 30

  12. Approach Approach description Mechanical modeling Electrical modeling Dan White (University of Nebraska–Lincoln) ENGM 875 December 14, 2007 12 / 30

  13. Approach Mechanical modeling Mechanical modeling Air squeeze-film damping: f m = 16 µ W 3 L z ˙ z 3 z - distance between plates (not from equilibrium) µ - viscosity of air, ∝ pressure W - width of plate L - length of plate Dan White (University of Nebraska–Lincoln) ENGM 875 December 14, 2007 13 / 30

  14. Approach Electrical modeling Electrical modeling Capacitance: C variable = ǫ 0 WL z ǫ 0 - permittivity of free space ≈ air Charge: Q = C ∗ V Dan White (University of Nebraska–Lincoln) ENGM 875 December 14, 2007 14 / 30

  15. Approach Electrical modeling Electrostatic force: f e = − Q 2 2 ǫ 0 WL Q - charge on variable capacitor W = F ∗ z = 1 2 QV V = Q / C Q 2 z F ∗ z = 1 2 Q Q C = 2 ǫ 0 WL Charge is constant during travel from z min → z max and z max → z min z > 0 : Q = Q 0 ˙ z < 0 : Q = 0 ˙ = ⇒ f e only acts when plates moving apart Dan White (University of Nebraska–Lincoln) ENGM 875 December 14, 2007 15 / 30

  16. Results Results Equation of motion In Vacuum Dan White (University of Nebraska–Lincoln) ENGM 875 December 14, 2007 16 / 30

  17. Results Equation of motion Equation of motion z > 0 : ˙ z + 16 µ W 3 L Q 2 m ¨ z + kz = − ˙ 2 ǫ 0 WL − m ¨ z z 3 z < 0 : ˙ z + 16 µ W 3 L m ¨ z + kz = − m ¨ ˙ z z 3 Dan White (University of Nebraska–Lincoln) ENGM 875 December 14, 2007 17 / 30

  18. Results In Vacuum In vacuum µ → 0 Q 2 z > 0 : m ¨ ˙ z + kz = − 2 ǫ 0 WL − m ¨ z z < 0 : m ¨ ˙ z + kz = − m ¨ z Or: Q 2 m ¨ z + 4 ǫ 0 WL (1 + sgn (˙ z )) + kz = − m ¨ z Dan White (University of Nebraska–Lincoln) ENGM 875 December 14, 2007 18 / 30

  19. Results In Vacuum Free vibration simulations f e = 0.062500 1 x dx E 0.5 0 -0.5 -1 0 2 4 6 8 10 12 14 16 t (s) Dan White (University of Nebraska–Lincoln) ENGM 875 December 14, 2007 19 / 30

  20. Results In Vacuum Free vibration simulations f e = 0.160000 1 x dx E 0.5 0 -0.5 -1 0 2 4 6 8 10 12 14 16 t (s) Dan White (University of Nebraska–Lincoln) ENGM 875 December 14, 2007 20 / 30

  21. Analysis Analysis Energy extraction z = 0 detection ˙ Dan White (University of Nebraska–Lincoln) ENGM 875 December 14, 2007 21 / 30

  22. Analysis Energy extraction Energy extraction With no mechanical damping, reduction in mech. E represents mech-to-electrical energy conversion Maximum extraction if return to equilibrium Application is periodic “single” events: P = E extract ¯ T event Dan White (University of Nebraska–Lincoln) ENGM 875 December 14, 2007 22 / 30

  23. Analysis z = 0 detection ˙ z = 0 detection ˙ Control circuitry triggered at z extrema Low power detection circuit Not necessarily clocked/periodic Dan White (University of Nebraska–Lincoln) ENGM 875 December 14, 2007 23 / 30

  24. Future Future directions Control laws Simulation accuracy Device optimization Non-resonant operation Dan White (University of Nebraska–Lincoln) ENGM 875 December 14, 2007 24 / 30

  25. Future Control laws Control laws Better charge insertion/extraction profile Maximize energy extraction w.r.t. electronics Dan White (University of Nebraska–Lincoln) ENGM 875 December 14, 2007 25 / 30

  26. Future Simulation accuracy Realistic simulation Match measured results Dan White (University of Nebraska–Lincoln) ENGM 875 December 14, 2007 26 / 30

  27. Future Device optimization Optimization Exploration of parameter-performance surfaces Need a specific application for optimization Dan White (University of Nebraska–Lincoln) ENGM 875 December 14, 2007 27 / 30

  28. Future Non-resonant operation Sub-resonant operation Spectrum of forcing < resonance Large force “sets” large E pot = 1 2 kx 2 Return to equilibrum slowed by electrical damping Dan White (University of Nebraska–Lincoln) ENGM 875 December 14, 2007 28 / 30

  29. Conclusion Conclusion Dan White (University of Nebraska–Lincoln) ENGM 875 December 14, 2007 29 / 30

  30. Conclusion Dan White (University of Nebraska–Lincoln) ENGM 875 December 14, 2007 30 / 30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend