robust multi objective control for linear systems
play

Robust Multi-Objective Control for Linear Systems Elements of theory - PowerPoint PPT Presentation

Robust Multi-Objective Control for Linear Systems Elements of theory and ROMULOC toolbox Dimitri PEAUCELLE & Denis ARZELIER LAAS-CNRS, Toulouse, FRANCE with the participation of Masters Students Maud SEVIN & Alberto BORTOTT General


  1. Robust Multi-Objective Control for Linear Systems Elements of theory and ROMULOC toolbox Dimitri PEAUCELLE & Denis ARZELIER LAAS-CNRS, Toulouse, FRANCE with the participation of Master’s Students Maud SEVIN & Alberto BORTOTT

  2. General Features of RoMulOC ➞ Matlab Toolbox - freely distributed www/laas.fr/OLOCEP/romuloc I - Modeling features of uncertain LTI systems ➞ State-space systems with performance input/output channel ➞ Both polytopic and LFT uncertain systems - large variety of uncertainty models ➞ Basic model manipulations II - Robust performances in Lyapunov framework ➞ Robust control objectives: stability, transient response (pole location), perturbation rejection ( H ∞ , H 2 and impulse-to-peak) ➞ All performances are recast in a Lyapunov framework ➞ Robustness is achieved with either Unique Lyapunov function or PDLF ➞ LMI results derived using Quadratic Separation and Slack Variables III - LMIs and convex polynomial-time optimization ➞ Semi-Definite Programming and LMIs (black box) ➞ SDP solvers and YALMIP parser (user can tune solvers) RoMulOC toolbox 1 WCFCL ’08, September 26th, 2008, Sienna

  3. Demo example - problem formulation 6-th order mechanical system ( x ∈ R 3 ) x ( t ) + M − 1 (∆ M ) D (∆ D ) ˙ x ( t ) + M − 1 (∆ M ) Kx ( t ) = M − 1 (∆ M ) E (∆ E ) w ( t ) ¨ z ( t ) = C (∆ C ) x ( t ) + Fw ( t ) where 0.35 0.3 0.25 0.2 0.15 M (∆ M ) = M 0 + M 1 ∆ M M 2 with ∆ M ∈ R 1 × 2 in ellipsoid 0.1 0.05 0 � 0.05 � 0.1 � 0.15 � 0.35 � 0.3 � 0.25 � 0.2 � 0.15 � 0.1 � 0.05 0 0.05 0.1 0.15 D (∆ D ) = D 0 + D 1 ∆ D D 2 with ∆ D ∈ R 2 × 2 norm-bounded ∆ T D ∆ D ≤ 0 . 25 2 I E (∆ E ) = E 0 + E 1 ∆ E E 2 with ∆ E ∈ [ − 0 . 25 0 . 25] scalar in interval � � ∆ [1] C , ∆ [2] C , ∆ [3] C (∆ C ) = C 0 + C 1 ∆ C C 2 with ∆ C ∈ R 2 × 2 in polytope co C Robust analysis ➞ Robust pole location in a sector (robust bound on damping of all modes) ➞ Robust H ∞ norm of w → z transfer : � T z/w ( s, ∆) � ∞ ≤ γ . RoMulOC toolbox 2 WCFCL ’08, September 26th, 2008, Sienna

  4. Demo example - solved with RoMulOC >> sys=ssmodel(’mechanical system’); >> sys.A = [ zeros(n) , eye(n) ; -iM0*D0 , -iM0*K ]; ... >> sys.Bw = [ zeros(n) ; iM0*E0 ]; >> Dm = udiss( X, Y, Z, ’Inertia’); >> Dd = unb( 2, 2, 0.25, ’Damping’); >> De = uinter(-0.25, 0.25, ’Input’); >> Dc = upoly( Dcv, ’Output’); >> usys = ussmodel( sys, diag(Dm, Dd, De, Dc) ); >> r1 = region( ’plane’, 0, asin(0.35) ); >> pb1 = dstability( usys, r1 ); >> pb1 = pb1 + ctrpb( ’analysis’, ’Lyap unique’ ); >> IsDstable = solvesdp( pb1 ); >> pb2 = hinfty( pb2, usinf ); >> pb2unique = pb2 + ctrpb( ’analysis’, ’Lyap unique’ ); >> HinfLyapUnique = solvesdp( pb2unique ); >> pb2PDLF = pb2 + ctrpb( ’analysis’ , ’PDLF’ ); >> HinfPDLF = solvesdp( pb2PDLF ); RoMulOC toolbox 3 WCFCL ’08, September 26th, 2008, Sienna

  5. I - Uncertain LTI systems and performances General Robust Multi-Objective Control Problem ∆ : errors in modeling, operating conditions, mass-production... ∆ : uncertainty belongs to a set ∆ ∆ . sx ( t ) = A (∆) x ( t ) + B w (∆) w ( t ) + B u (∆) u ( t ) z ( t ) = C z (∆) x ( t ) + D zw (∆) w ( t ) + D zu (∆) u ( t ) y ( t ) = C y (∆) x ( t ) + D yw (∆) w ( t ) + D yu (∆) u ( t ) Find controller K that fulfills robust specifications Π i defined for models Σ i (∆ i ) with ∆ i ∈ ∆ ∆ i . F F 2 Σ ( Δ ) Σ (0) Σ 2 ( Δ ) 1 1 1 1 2 K K K RoMulOC today ➞ Modeling tools ready for the global design problem (uncertainties restricted to be constant) ➞ Analysis : Unique Lyapunov function and a PDLF method ➞ Control design : only for unique Lyapunov function RoMulOC toolbox 4 WCFCL ’08, September 26th, 2008, Sienna

  6. I - Uncertain LTI systems and performances [2] Σ Σ ( Δ ) ➞ Polytopic models z w [1] [N] Σ < γ Σ u y K ✪ Affine polytopic models : convex hull of N vertices A (∆) = � ζ i A [ i ] , B w (∆) = � ζ i B [ i ] : ζ i ≥ 0 , � ζ i = 1 . . . w RoMulOC toolbox 5 WCFCL ’08, September 26th, 2008, Sienna

  7. I - Uncertain LTI systems and performances [2] Σ Σ ( Δ ) ➞ Polytopic models z w [1] [N] Σ < γ Σ u y K ✪ Affine polytopic models : convex hull of N vertices A (∆) = � ζ i A [ i ] , B w (∆) = � ζ i B [ i ] : ζ i ≥ 0 , � ζ i = 1 . . . w ➥ Parallelotopic models with N P axes A (∆) = A [0] + � ξ i A [ i ] , B w (∆) = B [0] w + � ξ i B [ i ] . . . : | ξ i | ≤ 1 w ➾ polytope with N = 2 N P vertices ➥ Interval models with N I non equal coefficients A [1] � A (∆) � A [2] : a [1] ij ≤ a ij (∆) ≤ a [2] ij ➾ parallelotope with axes in the euclidian basis of matrices ➾ polytope with N = 2 N I vertices RoMulOC toolbox 6 WCFCL ’08, September 26th, 2008, Sienna

  8. I - Uncertain LTI systems and performances Δ w z Δ Δ w z ➞ LFT models Σ < γ u y K sx ( t ) = Ax ( t ) + B ∆ w ∆ ( t ) + B w w ( t ) + B u u ( t ) w ∆ ∈ C q ∆ z ∆ ( t ) = C ∆ x ( t ) + D ∆∆ w ∆ ( t ) + D ∆ w w ( t ) + D ∆ u u ( t ) : z ∆ ∈ C p ∆ z ( t ) = C z x ( t ) + D z ∆ w ∆ ( t ) + D zw w ( t ) + D zu u ( t ) y ( t ) = C y x ( t ) + D y ∆ w ∆ ( t ) + D yw w ( t ) + D yu u ( t ) Linear - Fractional Transformation: A (∆) = A + B ∆ ∆( I − D ∆∆ ∆) − 1 C ∆ , B w (∆) = B w + B ∆ ∆( I − D ∆∆ ∆) − 1 D ∆ w . . . Any model rational in δ i parameters ➾ LFT (not unique) with diagonal ∆ = diag ( δ 1 , δ 1 , ..., δ 2 , ... ) . RoMulOC toolbox 7 WCFCL ’08, September 26th, 2008, Sienna

  9. I - Uncertain LTI systems and performances ➞ Uncertainty sets ✪ { X, Y, Z }− dissipative matrices : X + Y ∆ + ∆ ∗ Y ∗ + ∆ ∗ Z ∆ ≤ O , X ≤ O , Z ≥ O ∆ ∈ C q w × p z � � ➾ {− ρ 2 I , O , I }− dissipative ➥ Norm-bounded uncertainties : � ∆ � ≤ ρ 1 ➥ Positive real uncertainties : ∆ + ∆ ∗ ≥ O (eg. s ) ➾ { O , − I , O }− dissipative RoMulOC toolbox 8 WCFCL ’08, September 26th, 2008, Sienna

  10. I - Uncertain LTI systems and performances ➞ Uncertainty sets ✪ { X, Y, Z }− dissipative matrices : X + Y ∆ + ∆ ∗ Y ∗ + ∆ ∗ Z ∆ ≤ O , X ≤ O , Z ≥ O ∆ ∈ C q w × p z � � ➾ {− ρ 2 I , O , I }− dissipative ➥ Norm-bounded uncertainties : � ∆ � ≤ ρ 1 ➥ Positive real uncertainties : ∆ + ∆ ∗ ≥ O (eg. s ) ➾ { O , − I , O }− dissipative ✪ Polytopic uncertainties ∆ = � ζ i ∆ [ i ] : ζ i ≥ 0 , � ζ i = 1 � � polytope N vertices ➥ Parallelotopic uncertainties ∆ = ∆ [0] + � ξ i ∆ [ i ] : | ξ i | ≤ 1 � � polytope N = 2 N P N P axes ➾ ➥ Interval uncertainties � � ∆ [1] � ∆ � ∆ [2] : δ [1] ij ≤ δ ij ≤ δ [2] ij polytope N = 2 N I N I coef. � = ➾ RoMulOC toolbox 9 WCFCL ’08, September 26th, 2008, Sienna

  11. Demo example - solved with RoMulOC >> sys=ssmodel(’mechanical system’); >> sys.A = [ zeros(n) , eye(n) ; -iM0*D0 , -iM0*K ]; ... >> sys.Bw = [ zeros(n) ; iM0*E0 ]; >> Dm = udiss( X, Y, Z, ’Inertia’); >> Dd = unb( 2, 2, 0.25, ’Damping’); >> De = uinter(-0.25, 0.25, ’Input’); >> Dc = upoly( Dcv, ’Output’); >> usys = ussmodel( sys, diag(Dm, Dd, De, Dc) ); >> r1 = region( ’plane’, 0, asin(0.35) ); >> pb1 = dstability( usys, r1 ); >> pb1 = pb1 + ctrpb( ’analysis’, ’Lyap unique’ ); >> IsDstable = solvesdp( pb1 ); >> pb2 = hinfty( pb2, usinf ); >> pb2unique = pb2 + ctrpb( ’analysis’, ’Lyap unique’ ); >> HinfLyapUnique = solvesdp( pb2unique ); >> pb2PDLF = pb2 + ctrpb( ’analysis’ , ’PDLF’ ); >> HinfPDLF = solvesdp( pb2PDLF ); RoMulOC toolbox 10 WCFCL ’08, September 26th, 2008, Sienna

  12. II - Lyapunov based analysis Nominal performance analysis V ( x ) = x T Px Lyapunov function ( P > O ) A T P + PA < O A T PA − P < O | ✪ Stability      r 11 P r 12 P  I � �  < O ✪ D-Stability A ∗ I  r ∗ 12 P r 22 P A    A T P + PA + C T PB w + C T z C z z D zw  < O ✪ H ∞ norm B T w P + D T − γ 2 I + D T zw C z zw D zw A T P + PA + C T z C z < O ✪ H 2 norm trace ( B T w PB w ) < γ 2 A T P + PA < O B T w PB w < γ 2 I ✪ Impulsion-to-peak C T D T zw D zw < γ 2 I z C z < P RoMulOC toolbox 11 WCFCL ’08, September 26th, 2008, Sienna

  13. II - Lyapunov based analysis Robust performance analysis V ( x, ∆) parameter-dependent Lyapunov function. ✪ Nominal analysis (LMI) → Robust analysis (NP-hard) ∃ P : L Σ ( P ) < O → ∀ ∆ ∈ ∆ ∆ , ∃ P (∆) : L Σ(∆) ( P (∆)) < O Test over sample values in ∆ ∆ gives optimistic results. RoMulOC toolbox 12 WCFCL ’08, September 26th, 2008, Sienna

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend