robust multi objective control for linear systems
play

Robust Multi-Objective Control for Linear Systems Elements of theory - PowerPoint PPT Presentation

Robust Multi-Objective Control for Linear Systems Elements of theory and ROMULOC toolbox OLOCEP project Denis Arzelier & Didier Henrion & Jean Lasserre & Dimitri Peaucelle LAAS-CNRS, Toulouse, FRANCE CNRS-RAS cooperation Outline I


  1. Robust Multi-Objective Control for Linear Systems Elements of theory and ROMULOC toolbox OLOCEP project Denis Arzelier & Didier Henrion & Jean Lasserre & Dimitri Peaucelle LAAS-CNRS, Toulouse, FRANCE CNRS-RAS cooperation

  2. Outline I - Uncertain LTI systems and performances ➞ Control objectives: stability, transient response, perturbation rejection... ➞ Structured parametric uncertainties: extremal values, bounded sets... II - LMIs and convex polynomial-time optimization ➞ Semi-Definite Programming and LMIs ➞ SDP solvers and parsers III - Conservative LMI results ➞ Methods: Lyapunov, S-procedure, Finsler lemma, Topologic Separation... ➞ The ROMULOC toolbox Seminar at IPME 1 March 21st, 2005, St. Petersburg

  3. I - Uncertain LTI systems and performances Ia - Control objectives ➞ Stability & D-stability x ∈ C n u ∈ C q u sx ( t ) = Ax ( t ) + B u u ( t ) : y ∈ C p y y ( t ) = C y x ( t ) + D yu u ( t ) Design an LTI control u = Ky s.t. poles belong to a region of the complex plane (or for given K analyse pole location): D R = { s ∈ C : r 11 + sr 12 + s ∗ r 12 + ss ∗ r 22 ≤ 0 } , R = ( r ij ) Such regions are half-planes and discs        0 1  − 1 0 − 2 α cos ψ cos ψ − i sin ψ  R =  R = R =   1 0 0 1 cos ψ + i sin ψ 0 ψ α Seminar at IPME 2 March 21st, 2005, St. Petersburg

  4. I - Uncertain LTI systems and performances Ia - Control objectives ➞ H ∞ & H 2 & Impulse-to-peak performance sx ( t ) = Ax ( t ) + B w w ( t ) + B u u ( t ) w ∈ C q w : z ( t ) = C z x ( t ) + D zw w ( t ) + D zu u ( t ) z ∈ C p z y ( t ) = C y x ( t ) + D yw w ( t ) + D yu u ( t ) H ∞ performance : � z � ≤ γ ∞ � w � ; bounded-real lemma H 2 performance : � z � ≤ γ 2 for w g.w.n. ; max | z | ≤ γ 2 � w � Impulse-to-peak performance : max | z | ≤ γ i2p for w = δ . Design an LTI control u = Ky s.t. given specification γ is fulfilled or that minimizes γ (or for given K analyse performance level) Seminar at IPME 3 March 21st, 2005, St. Petersburg

  5. I - Uncertain LTI systems and performances Ib - Robust Multi-Objective Control ∆ : errors in modeling, operating conditions, mass-production... ∆ : parametric uncertainty, assumed constant, belongs to a set ∆ ∆ . sx ( t ) = A (∆) x ( t ) + B w (∆) w ( t ) + B u (∆) u ( t ) z ( t ) = C z (∆) x ( t ) + D zw (∆) w ( t ) + D zu (∆) u ( t ) y ( t ) = C y (∆) x ( t ) + D yw (∆) w ( t ) + D yu (∆) u ( t ) Find controller K that fulfills robust specifications Π i defined for models Σ i (∆ i ) with ∆ i ∈ ∆ ∆ i . (∆ ) Σ (0) Σ 2 (∆ ) F 2 F Σ 1 1 1 1 2 K K K Seminar at IPME 4 March 21st, 2005, St. Petersburg

  6. I - Uncertain LTI systems and performances Ic - Structured uncertainties [2] Σ Σ(∆) ➞ Polytopic models z w [1] Σ [N] Σ < γ u y K ✪ Affine polytopic models : convex hull of N vertices A (∆) = � ζ i A [ i ] , B w (∆) = � ζ i B [ i ] : ζ i ≥ 0 , � ζ i = 1 . . . w Seminar at IPME 5 March 21st, 2005, St. Petersburg

  7. I - Uncertain LTI systems and performances Ic - Structured uncertainties [2] Σ Σ(∆) ➞ Polytopic models z w [1] Σ [N] Σ < γ u y K ✪ Affine polytopic models : convex hull of N vertices A (∆) = � ζ i A [ i ] , B w (∆) = � ζ i B [ i ] : ζ i ≥ 0 , � ζ i = 1 . . . w ➥ Parallelotopic models with N P axes A (∆) = A [0] + � ξ i A [ i ] , B w (∆) = B [0] w + � ξ i B [ i ] . . . : | ξ i | ≤ 1 w ➾ polytope with N = 2 N P vertices ➥ Interval models with N I non equal coefficients A [1] � A (∆) � A [2] : a [1] ij ≤ a ij (∆) ≤ a [2] ij ➾ parallelotope with axes in the euclidian basis of matrices ➾ polytope with N = 2 N I vertices Seminar at IPME 6 March 21st, 2005, St. Petersburg

  8. I - Uncertain LTI systems and performances Ic - Structured uncertainties ∆ w z ∆ ∆ w z Σ ➞ LFT models < γ u y K sx ( t ) = Ax ( t ) + B ∆ w ∆ ( t ) + B w w ( t ) + B u u ( t ) w ∆ ∈ C q ∆ z ∆ ( t ) = C ∆ x ( t ) + D ∆∆ w ∆ ( t ) + D ∆ w w ( t ) + D ∆ u u ( t ) : z ∆ ∈ C p ∆ z ( t ) = C z x ( t ) + D z ∆ w ∆ ( t ) + D zw w ( t ) + D zu u ( t ) y ( t ) = C y x ( t ) + D y ∆ w ∆ ( t ) + D yw w ( t ) + D yu u ( t ) Linear - Fractional Transformation: A (∆) = A + B ∆ ∆( I − D ∆∆ ∆) − 1 C ∆ , B w (∆) = B w + B ∆ ∆( I − D ∆∆ ∆) − 1 D ∆ w . . . Any model rational in δ i parameters ➾ LFT (not unique) with diagonal ∆ = diag ( δ 1 , δ 1 , ..., δ 2 , ... ) . Seminar at IPME 7 March 21st, 2005, St. Petersburg

  9. I - Uncertain LTI systems and performances Ic - Structured uncertainties ➞ Uncertainty sets ✪ { X, Y, Z }− dissipative matrices : X + Y ∆ + ∆ ∗ Y ∗ + ∆ ∗ Z ∆ ≤ O , X ≤ O , Z ≥ O ∆ ∈ C q w × p z � � ➾ {− ρ 2 I , O , I }− dissipative ➥ Norm-bounded uncertainties : � ∆ � ≤ ρ 1 ➥ Positive real uncertainties : ∆ + ∆ ∗ ≥ O (eg. s ) ➾ { O , − I , O }− dissipative Seminar at IPME 8 March 21st, 2005, St. Petersburg

  10. I - Uncertain LTI systems and performances Ic - Structured uncertainties ➞ Uncertainty sets ✪ { X, Y, Z }− dissipative matrices : X + Y ∆ + ∆ ∗ Y ∗ + ∆ ∗ Z ∆ ≤ O , X ≤ O , Z ≥ O ∆ ∈ C q w × p z � � ➾ {− ρ 2 I , O , I }− dissipative ➥ Norm-bounded uncertainties : � ∆ � ≤ ρ 1 ➥ Positive real uncertainties : ∆ + ∆ ∗ ≥ O (eg. s ) ➾ { O , − I , O }− dissipative ✪ Polytopic uncertainties ∆ = � ζ i ∆ [ i ] : ζ i ≥ 0 , � ζ i = 1 � � polytope N vertices ➥ Parallelotopic uncertainties ∆ = ∆ [0] + � ξ i ∆ [ i ] : | ξ i | ≤ 1 � � polytope N = 2 N P N P axes ➾ ➥ Interval uncertainties � � ∆ [1] � ∆ � ∆ [2] : δ [1] ij ≤ δ ij ≤ δ [2] ij polytope N = 2 N I N I coef. � = ➾ Seminar at IPME 9 March 21st, 2005, St. Petersburg

  11. Outline I - Uncertain LTI systems and performances ➞ Control objectives: stability, transient response, perturbation rejection... ➞ Structured parametric uncertainties: extremal values, bounded sets... ∆ [2] Σ w z ∆ ∆ Σ(∆) w z Σ z w < γ [1] Σ [N] Σ < γ u y u y K K II - LMIs and convex polynomial-time optimization ➞ Semi-Definite Programming and LMIs ➞ SDP solvers and parsers III - Conservative LMI results ➞ Methods: Lyapunov, S-procedure, Finsler lemma, Topologic Separation... ➞ The ROMULOC toolbox Seminar at IPME 10 March 21st, 2005, St. Petersburg

  12. II - LMIs and convex polynomial-time optimization IIa - Semi-Definite Programming and LMIs ✪ Extension of LP to semi-definite matrices min cx : Ax = b , x i ≥ 0 ( LP ) | mat ( x ) ≥ O ( SDP ) ➥ Convexity, duality, polynomial-time algorithms ( O ( n 6 . 5 log(1 /ǫ )) ). max b T y A T y − c T = z , : mat ( z ) ≥ O ✪ 1st developments and 1st results : LMI formalism & Control Theory � � min g i y i : F 0 + F i y i ≥ O ➥ The H ∞ norm computation example for G ( s ) ∼ ( A, B, C, D ) :    A T P + PA + C T B w P + C T z C z z D zw � G ( s ) � 2  ≤ O = min γ : P > O , ∞ PB T w + D T − γ I + D T zw C z zw D zw Seminar at IPME 11 March 21st, 2005, St. Petersburg

  13. II - LMIs and convex polynomial-time optimization IIb - SDP solvers and parsers ➞ LMI Control Toolbox ➾ Control Toolbox 1st solver, dedicated to LMIs issued from Control Theory, Matlab, owner. ➞ SDP solvers: SP , SeDuMi, SDPT3, CSDP , DSDP , SDPA... Active field, mathematical programing, C/C++, free. ➞ Parsers: tklmitool, sdpsol, SeDuMiInterface, YALMIP Convert LMIs to SDP solver format, Matlab (Scilab), free. Seminar at IPME 12 March 21st, 2005, St. Petersburg

  14. II - LMIs and convex polynomial-time optimization IIc - SDP-LMI issues and prospectives ✪ Any SDP representable problem is ”solved” (numerical problems due to size and structure) ➥ Find ”SDP-ables” problems (linear systems, performances, robustness, LPV, saturations, delays, singular systems...) ➥ Equivalent SDP formulations ➾ distinguish which are numerically efficient ➥ New SDP solvers: faster, precise, robust (need for benchmark examples) Seminar at IPME 13 March 21st, 2005, St. Petersburg

  15. II - LMIs and convex polynomial-time optimization IIc - SDP-LMI issues and prospectives ✪ Any SDP representable problem is ”solved” (numerical problems due to size and structure) ➥ Find ”SDP-ables” problems (linear systems, performances, robustness, LPV, saturations, delays, singular systems...) ➥ Equivalent SDP formulations ➾ distinguish which are numerically efficient ➥ New SDP solvers: faster, precise, robust (need for benchmark examples) ✪ Any ”SDP-able” problem has a dual interpretation ➥ New theoretical results, new proofs (Lyapunov functions = Lagrange multipliers) ➥ SDP formulas numerically stable (KYP-lemma) Seminar at IPME 14 March 21st, 2005, St. Petersburg

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend