engi ne engi ne
play

ENGI NE ENGI NE Potsdam, 12 January 2007, ENGINE Mid- Potsdam, 12 - PowerPoint PPT Presentation

SIXTH FRAMEWORK PROGRAMME, PRIORITY 1.6 Sustainable energy systems Project : : ENhanced ENhanced Geotherm al Geotherm al I nnovative I nnovative Netw ork Netw ork for for Europe Europe Project ENGI NE ENGI NE Potsdam, 12 January


  1. SIXTH FRAMEWORK PROGRAMME, PRIORITY 1.6 «Sustainable energy systems» Project : : ENhanced ENhanced Geotherm al Geotherm al I nnovative I nnovative Netw ork Netw ork for for Europe Europe Project ENGI NE ENGI NE Potsdam, 12 January 2007, ENGINE Mid- Potsdam, 12 January 2007, ENGINE Mid -term Conference term Conference POW ER EXTRACTI ON FROM POW ER EXTRACTI ON FROM HDR SYSTEMS HDR SYSTEMS Evald Shpilrain, Oleg Popel, Semen Frid I nstitute for High Tem peratures of the Russian Academ y of Sciences es I nstitute for High Tem peratures of the Russian Academ y of Scienc

  2. T W , kg/s T 1 Scheme of HDR Scheme of HDR T System System WM dq T dl Water T, P T wm P wm Water HE HE T 0 1 = O 150 T C T 0 Air P 1 = 10 bar ( ) kW S = − = N c T T 420 0 = = O T 50 C G 1 kg / s th pw 1 0 kg s ⎛ − ⎞ ⎛ − ⎞ T T ⎜ ⎟ ⎜ ⎟ = = ⋅ ⋅ dl dq 1 0 c dT 1 0 ⎜ ⎟ ⎜ ⎟ pw ⎝ ⎠ ⎝ ⎠ T T 1 1 ⎛ − ⎞ ⎡ ⎤ ⎛ ⎞ − T T ( ) T 1 T T T ⎜ ⎟ = ∫ = − − ⋅ = ⎜ ⎟ − + ⎢ ⎥ l c dT 1 0 c T T c T ln 1 0 1 0 ⎜ ⎟ N th 1 ln 1 ⎜ ⎟ − pw pw 1 0 pw 0 ⎝ ⎠ ⎝ ⎠ ⎣ T T T ⎦ T T 1 0 0 T 0 1 0 T = = x 0 3 , 23 − T T 1 0 ⎡ ⎤ ⎛ ⎞ 1 ( ) = − + = − ≈ ⎜ ⎟ l N ⎢ 1 x ln 1 ⎥ N 1 0 , 872 0 , 128 N th th th ⎝ ⎠ ⎣ ⎦ x l η = = 12 , 8 % max N th

  3. The thermal power of the water flow is transmitted to a working media ( W M ). The optimal thermodynamic cycle should have the heat admission curve (in most cases an isobar) which shape is similar to the water cooling down curve shape: constant heat capacity along the heat admission isobar. T Since generally C pw m ≠ C pw , the specific W M flow rate in the heat exchanger should be q 1 W = C pw / C pw m The specific work l , kJ/ kg of the WM cycle is l = q 1 × η t S Hence the total installation power N [ kW] = l [ kJ/ kg] × W [ kg/ s] In a real cycle C pw m ≠ const , there arises a problem with W M flow rate.

  4. SUBCRITICAL RANKINE CYCLE SUBCRITICAL RANKINE CYCLE T T 1 4 = − q ( kJ / kg ) ( h h ) 1 4 1 P = − ( / ) ( ) l kJ kg h h 4 5 η = = − − 2 / ( ) /( ) l q h h h h T 3 t 1 4 5 4 1 ) T 0 ( P s T 0 5 1 S

  5. TEMPERATURE PINCH EFFECT TEMPERATURE PINCH EFFECT IN HEAT EXCHANGER IN HEAT EXCHANGER T wm , W, kg/s T, var T 0, , var T 1 , 1 kg/s T T 1 T 0 T T s W<W pinch W<W pinch T wm x

  6. TEMPERATURE PINCH EFFECT TEMPERATURE PINCH EFFECT IN HEAT EXCHANGER IN HEAT EXCHANGER T wm , W, kg/s T, var T 0, , var T 1 , 1 kg/s T T 1 T 0 T T s W<W pinch W<W pinch T wm x

  7. TEMPERATURE PINCH EFFECT TEMPERATURE PINCH EFFECT IN HEAT EXCHANGER IN HEAT EXCHANGER T wm , W, kg/s T, var T 0, , var T 1 , 1 kg/s T T 1 T 0 T T s W<W pinch W<W pinch T wm x

  8. TEMPERATURE PINCH EFFECT TEMPERATURE PINCH EFFECT IN HEAT EXCHANGER IN HEAT EXCHANGER T wm , W, kg/s T, var T 0, , var T 1 , 1 kg/s T T 1 T 0 T T s W<W pinch W<W pinch T wm x

  9. TEMPERATURE PINCH EFFECT TEMPERATURE PINCH EFFECT IN HEAT EXCHANGER IN HEAT EXCHANGER T wm , W, kg/s T, var T 0, , var T 1 , 1 kg/s T T 1 T T 0 T s W<W pinch W<W pinch T wm x

  10. TEMPERATURE PINCH EFFECT TEMPERATURE PINCH EFFECT IN HEAT EXCHANGER IN HEAT EXCHANGER T wm , W, kg/s T, var T 0, , var T 1 , 1 kg/s T T 1 T T 0 T s W<W pinch W<W pinch T wm x

  11. TEMPERATURE PINCH EFFECT TEMPERATURE PINCH EFFECT IN HEAT EXCHANGER IN HEAT EXCHANGER T wm , W, kg/s T, var T 0, , var T 1 , 1 kg/s T T 1 T T 0 T s W<W pinch W<W pinch T wm x

  12. TEMPERATURE PINCH EFFECT TEMPERATURE PINCH EFFECT IN HEAT EXCHANGER IN HEAT EXCHANGER T wm , W, kg/s T, var T 0, , var T 1 , 1 kg/s T T 1 T T 0 T s W<W pinch W<W pinch T wm x

  13. TEMPERATURE PINCH EFFECT TEMPERATURE PINCH EFFECT IN HEAT EXCHANGER IN HEAT EXCHANGER T wm , W, kg/s T, var T 0, , var T 1 , 1 kg/s T T 1 T T 0 T s W<W pinch W<W pinch T wm x

  14. TEMPERATURE PINCH EFFECT TEMPERATURE PINCH EFFECT IN HEAT EXCHANGER IN HEAT EXCHANGER T wm , W, kg/s T, var T 0, , var T 1 , 1 kg/s T T 1 T T 0 T s W<W pinch W<W pinch T wm x

  15. TEMPERATURE PINCH EFFECT TEMPERATURE PINCH EFFECT IN HEAT EXCHANGER IN HEAT EXCHANGER T wm , W, kg/s T, var T 0, , var T 1 , 1 kg/s T T 1 T T 0 T s W<W pinch W<W pinch T wm x

  16. TEMPERATURE PINCH EFFECT TEMPERATURE PINCH EFFECT IN HEAT EXCHANGER IN HEAT EXCHANGER T wm , W, kg/s T, var T 0, , var T 1 , 1 kg/s T T 1 T T 0 T s W<W pinch W<W pinch T wm x

  17. TEMPERATURE PINCH EFFECT TEMPERATURE PINCH EFFECT IN HEAT EXCHANGER IN HEAT EXCHANGER T wm , W, kg/s T, var T 0, , var T 1 , 1 kg/s T T 1 T T 0 T s W<W pinch W<W pinch T wm x

  18. TEMPERATURE PINCH EFFECT TEMPERATURE PINCH EFFECT IN HEAT EXCHANGER IN HEAT EXCHANGER T wm , W, kg/s T, var T 0, , var T 1 , 1 kg/s T T 1 T T 0 T s W<W pinch W<W pinch T wm x

  19. TEMPERATURE PINCH EFFECT TEMPERATURE PINCH EFFECT IN HEAT EXCHANGER IN HEAT EXCHANGER T wm , W, kg/s T, var T 0, , var T 1 , 1 kg/s T T 1 T T 0 T s W<W pinch W<W pinch T wm x

  20. TEMPERATURE PINCH EFFECT TEMPERATURE PINCH EFFECT IN HEAT EXCHANGER IN HEAT EXCHANGER T wm , W, kg/s T, var T 0, , var T 1 , 1 kg/s T T 1 T T 0 T s W<W pinch W<W pinch T wm x

  21. TEMPERATURE PINCH EFFECT TEMPERATURE PINCH EFFECT IN HEAT EXCHANGER IN HEAT EXCHANGER T wm , W, kg/s T, var T 0, , var T 1 , 1 kg/s T T 1 T T 0 T s W<W pinch W<W pinch T wm x

  22. TEMPERATURE PINCH EFFECT TEMPERATURE PINCH EFFECT IN HEAT EXCHANGER IN HEAT EXCHANGER T wm , W, kg/s T, var T 0, , var T 1 , 1 kg/s T T 1 T T 0 T s W<W pinch W<W pinch T wm x

  23. TEMPERATURE PINCH EFFECT TEMPERATURE PINCH EFFECT IN HEAT EXCHANGER IN HEAT EXCHANGER T wm , W, kg/s T, var T 0, , var T 1 , 1 kg/s T T 1 T T 0 T s W<W pinch W<W pinch T wm x

  24. TEMPERATURE PINCH EFFECT TEMPERATURE PINCH EFFECT IN HEAT EXCHANGER IN HEAT EXCHANGER T wm , W, kg/s T, var T 0, , var T 1 , 1 kg/s T T 1 T T 0 T s W<W pinch W<W pinch T wm x

  25. TEMPERATURE PINCH EFFECT TEMPERATURE PINCH EFFECT IN HEAT EXCHANGER IN HEAT EXCHANGER T wm , W, kg/s T, var T 0, , var T 1 , 1 kg/s T T 1 T T 0 T s W<W pinch W<W pinch T wm x

  26. TEMPERATURE PINCH EFFECT TEMPERATURE PINCH EFFECT IN HEAT EXCHANGER IN HEAT EXCHANGER T wm , W, kg/s T, var T 0, , var T 1 , 1 kg/s T T 1 T T s T 0 W<W pinch W<W pinch T wm x

  27. TEMPERATURE PINCH EFFECT TEMPERATURE PINCH EFFECT IN HEAT EXCHANGER IN HEAT EXCHANGER T wm , W, kg/s T, var T 0, , var T 1 , 1 kg/s T T 1 T T s T 0 W<W pinch W<W pinch T wm x

  28. TEMPERATURE PINCH EFFECT TEMPERATURE PINCH EFFECT IN HEAT EXCHANGER IN HEAT EXCHANGER T wm , W, kg/s T, var T 0, , var T 1 , 1 kg/s T T 1 T T s T 0 W<W pinch W<W pinch T wm x

  29. TEMPERATURE PINCH EFFECT TEMPERATURE PINCH EFFECT IN HEAT EXCHANGER IN HEAT EXCHANGER T wm , W, kg/s T, var T 0, , var T 1 , 1 kg/s T T 1 T T s T 0 W=W pinch W=W pinch T wm x

  30. TEMPERATURE PINCH EFFECT TEMPERATURE PINCH EFFECT IN HEAT EXCHANGER IN HEAT EXCHANGER T wm , W, kg/s T, var T 0, , var T 1 , 1 kg/s T T 1 T T s T 0 W>W pinch W>W pinch T wm x

  31. TEMPERATURE PINCH EFFECT TEMPERATURE PINCH EFFECT IN HEAT EXCHANGER IN HEAT EXCHANGER T wm , W, kg/s T, var T 0, , var T 1 , 1 kg/s T T 1 T T s T 0 W>W pinch W>W pinch T wm x

  32. TEMPERATURE PINCH EFFECT TEMPERATURE PINCH EFFECT IN HEAT EXCHANGER IN HEAT EXCHANGER T wm , W, kg/s T, var T 0, , var T 1 , 1 kg/s T T 1 T T s T 0 W>W pinch W>W pinch T wm x

  33. TEMPERATURE PINCH EFFECT TEMPERATURE PINCH EFFECT IN HEAT EXCHANGER IN HEAT EXCHANGER T wm , W, kg/s T, var T 0, , var T 1 , 1 kg/s T T 1 T T s T 0 W>W pinch W>W pinch T wm x

  34. EFFICIENCY VERSUS FLOW- -RATE RATE EFFICIENCY VERSUS FLOW T T 1 T 1 η t T pinch q × W η = η 1 T 0 t N η th T 0 W pinch W

  35. 150 P c = 4.264 MPa C 3 H 8 O C T c = 96.8 O C 100 T, 4.264 4.2 4.2 4.1 4.1 4 4 3.9 3.9 3.8 3.8 3.7 3.7 3.6 3.6 3.5 3.5 3.4 3.4 3.3 3.3 3.2 3.2 3.1 3.1 3 3 2.9 2.9 2.8 2.8 2.7 2.7 2.6 2.6 2.5 2.5 2.4 2.4 2.3 2.3 2.2 2.2 2.1 2.1 2 2 1.9 1.9 50 1.8 1.8 4,5 5,0 5,5 6,0 S, kJ/kgK

  36. 150 P c = 3.647 MPa IC 4 H 10 O C T c = 134.9 3.6 3.647 3.6 3.5 3.5 3.4 3.4 3.3 3.3 3.2 3.2 3.1 3.1 3 3 2.9 2.9 2.8 2.8 2.7 2.7 2.6 2.6 2.5 2.5 2.4 2.4 2.3 2.3 2.2 2.2 2.1 2.1 O C 2 2 100 1.9 1.9 1.8 1.8 T, 1.7 1.7 1.6 1.6 1.5 1.5 1.4 1.4 1.3 1.3 1.2 1.2 1.1 1.1 1 1 0.9 0.9 0.8 0.8 0.7 0.7 50 3,5 4,0 4,5 5,0 5,5 S, kJ/kgK

  37. CONCLUSIONS: CONCLUSIONS: 1. There exist a thermodynamic limit of installation efficiency, defined by the outlet temperature of geothermal water; 2. An optimal thermodynamic cycle should have the heat admission curve similar to the cooling down curve of geothermal water; 3. This condition can be realized with a supercritical Rankine cycle; 4. To provide for maximum installation efficiency it is not enough to maximize the cycle thermal efficiency. It is necessary to look for maximum of the η t W product; 5. The optimal working media flow rate is governed by the temperature pinch in the heat exchanger.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend