energy condition modular flow and ads cft
play

Energy Condition, Modular Flow, and AdS/CFT Black Holes and - PowerPoint PPT Presentation

Energy Condition, Modular Flow, and AdS/CFT Black Holes and Holography Workshop,TSIMF, Jan 7-11, 2019 Huajia Wang Kavli Institute for Theoretical Physics u v v ( z ) u X + B ( z ) v O z = 0 z arXiv:1806.10560; arXiv:1706.09432; JHEP


  1. Energy Condition, Modular Flow, and AdS/CFT Black Holes and Holography Workshop,TSIMF, Jan 7-11, 2019 Huajia Wang Kavli Institute for Theoretical Physics u v ∆ v ( z ) u X + B ( z ) v O z = 0 z arXiv:1806.10560; arXiv:1706.09432; JHEP 1609 038(2016) S. Balakrishnan, T. Faulkner, R. Leigh, M. Li, Z. Khandker, O. Parrikar, H. Wang

  2. Energy Conditions What are they? unitarity of QM: positivity of total energy extended systems (QFT): local energy/momentum density constraints on energy/momentum density Z R n dx n E ( x ) ≥ 0 E = E ≥ 0 E 0

  3. Energy Conditions Why do we care? classical: important in general relativity energy-momentum = spacetime geometry energy conditions = constraints on spacetime Einstein’s equations: G µ ν = 8 π T µ ν

  4. Energy Conditions Why do we care? examples: Hawking, Ellis, 1973 strong energy condition (SEC) —> singularity theorem null energy condition (NEC) —> horizon area theorem ζ t t ✓ ◆ T ab − 1 T ab k a k b ≥ 0 k ζ a ζ b ≥ 0 2 Tg ab x x

  5. Energy Conditions What do we want? in QM: QFTs in fixed background spacetime h ˆ constraints on T µ ν i ψ NEC violated by quantum effects: e.g. Casimir effect correct modification to NEC? two main conjectures: Averaged Null Energy Condition (ANEC) Quantum Null Energy Condition (QNEC)

  6. AVERAGED NULL ENERGY CONDITION (ANEC) affine parameter t T µ ν i ψ k µ k ν � 0 d λ h ˆ R k x λ Why? violation leads to causality breakdown — supports traversable wormhole/time machine M. Morris, K. Thorne, U. Yurtsever, PRL. 61. 13. 1988 QUANTUM NULL ENERGY CONDITION (QNEC) T µ ν ( y ) i ψ k µ k ν � ∂ 2 h ˆ A ( λ ) λ S A ( λ ) ( ψ ) λ Motivation: generalized second law y A (0)

  7. Can we prove them in QFTs? How?

  8. A brief history of proofs… for specific types of theories: ANEC for free scalar and Maxwell fields; G. Klinkhammer, 1991; L. Ford, T. Roman, 1995; A. Folacci, 1992 ANEC for 2d massive QFTs; R. Verch, 2000 QNEC for free/super-renormalizable fields; R. Busso, Z. Fisher, J. Koeller, S. Leichenaber, A. Wall, 2015

  9. A brief history of proofs… for holographic theories (a broad class of CFTs): proof of ANEC using AdS/CFT: W. Kelly, A. Wall, 2014 causality constraint in the bulk. proof of QNEC using AdS/CFT: J. Koeller, S. Leichenauer, 2016; C. Akers. V. Chandrasekaran, S. Leichenaber, A. Levin, A. Moghaddam, 2017 entanglement wedge nesting (EWN)

  10. Can we do better? Proofs for generic QFT/CFTs?

  11. Can we do better? Proofs for generic QFT/CFTs? Recent progresses…

  12. Can we do better? Proofs for generic QFT/CFTs? ANEC in relativistic QFTs: T. Faulkner, R. Leigh, O. Parrikar, H. Wang, 2016 monotonicity of relative entropy ANEC in CFTs: T. Hartman, S. Kundu, A. Tajdini, 2016 causality of correlation functions in light-cone limit QNEC in CFTs: S. Balakrishna, T. Faulkner, Z. Khandker, H. Wang, 2017 causality of correlation function under modular flow

  13. Plan of the talk: Review of AdS/CFT proofs (ANEC + QNEC) Summary of general field theory proofs (ANEC + QNEC) Bulk modular flow in AdS/CFT Conclusion/outlooks

  14. Plan of the talk: Review of AdS/CFT proofs (ANEC + QNEC) Summary of general field theory proofs (ANEC + QNEC) Bulk modular flow in AdS/CFT Conclusion/outlooks

  15. Z ∞ dx + h ˆ Proving ANEC using AdS/CFT T ++ i ψ � 0 −∞ W. Kelly, A. Wall, 2014

  16. Z ∞ dx + h ˆ Proving ANEC using AdS/CFT T ++ i ψ � 0 −∞ W. Kelly, A. Wall, 2014 z t L bulk ≥ L bdry x S. Gao, R. Wald, 2000 L bdry L bulk “bulk respects boundary causality”

  17. Z ∞ dx + h ˆ Proving ANEC using AdS/CFT T ++ i ψ � 0 −∞ W. Kelly, A. Wall, 2014 z t L bulk ≥ L bdry x S. Gao, R. Wald, 2000 L bdry L bulk “bulk respects boundary causality” As a GR result, can be proved by assuming that the “ANEC” in the bulk theory is satisfied

  18. Z ∞ dx + h ˆ Proving ANEC using AdS/CFT T ++ i ψ � 0 −∞ W. Kelly, A. Wall, 2014 z t L bulk ≥ L bdry x S. Gao, R. Wald, 2000 L bdry L bulk “bulk respects boundary causality” In AdS/CFT, via Fefferman-Graham gauge expansion: ds 2 = R 2 ⇢  z d +2 �� � η ab + z d 16 π G dz 2 + dx a dx b � dR d − 1 h T ab i ψ + O , z ! 0 z 2

  19. Z ∞ dx + h ˆ Proving ANEC using AdS/CFT T ++ i ψ � 0 −∞ W. Kelly, A. Wall, 2014 z t L bulk ≥ L bdry x S. Gao, R. Wald, 2000 L bdry L bulk “bulk respects boundary causality” Gao-Wald’s conclusion as consistent condition for holographic CFTs Z ∞ dx + h ˆ lim z → 0 boundary ANEC T ++ i ψ � 0 −∞ leading order constraint in F. G. gauge expansion

  20. h T uu i ψ � ∂ 2 Proving QNEC using AdS/CFT u S EE J. Koeller, S. Leichenauer, 2016; C. Akers. V. Chandrasekaran, S. Leichenaber, A. Levin, A. Moghaddam, 2017

  21. h T uu i ψ � ∂ 2 Proving QNEC using AdS/CFT u S EE J. Koeller, S. Leichenauer, 2016; C. Akers. V. Chandrasekaran, S. Leichenaber, A. Levin, A. Moghaddam, 2017 “bulk reconstruction in entanglement wedges” AdS/CFT: bulk physics can be “reconstructed” from the boundary t z D ( A ) x how much bulk region can be reconstructed from CFT A operators localized in D(A)? subregion duality

  22. h T uu i ψ � ∂ 2 Proving QNEC using AdS/CFT u S EE J. Koeller, S. Leichenauer, 2016; C. Akers. V. Chandrasekaran, S. Leichenaber, A. Levin, A. Moghaddam, 2017 “bulk reconstruction in entanglement wedges” strong evidence: entanglement wedge t X. Dong, D. Harlow, A. Wall, 2016 z D ( A ) x ∂ a = Σ ∪ A a A RT surface Σ

  23. h T uu i ψ � ∂ 2 Proving QNEC using AdS/CFT u S EE J. Koeller, S. Leichenauer, 2016; C. Akers. V. Chandrasekaran, S. Leichenaber, A. Levin, A. Moghaddam, 2017 “bulk reconstruction in entanglement wedges” strong evidence: entanglement wedge D ( a ) t X. Dong, D. Harlow, A. Wall, 2016 z D ( A ) x ∂ a = Σ ∪ A a A entanglement wedge = D(a) RT surface Σ

  24. h T uu i ψ � ∂ 2 Proving QNEC using AdS/CFT u S EE J. Koeller, S. Leichenauer, 2016; C. Akers. V. Chandrasekaran, S. Leichenaber, A. Levin, A. Moghaddam, 2017 “bulk reconstruction in entanglement wedges” strong evidence: entanglement wedge D ( a ) t X. Dong, D. Harlow, A. Wall, 2016 z D ( A ) x ∂ a = Σ ∪ A a A entanglement wedge = D(a) RT surface Σ D ( a )“ ≈ ” D ( A )

  25. h T uu i ψ � ∂ 2 Proving QNEC using AdS/CFT u S EE J. Koeller, S. Leichenauer, 2016; C. Akers. V. Chandrasekaran, S. Leichenaber, A. Levin, A. Moghaddam, 2017 D ( ˜ A ) ⊆ D ( A ) → D (˜ a ) ⊆ D ( a ) Entanglement Wedge Nesting (EWN):

  26. h T uu i ψ � ∂ 2 Proving QNEC using AdS/CFT u S EE J. Koeller, S. Leichenauer, 2016; C. Akers. V. Chandrasekaran, S. Leichenaber, A. Levin, A. Moghaddam, 2017 D ( ˜ A ) ⊆ D ( A ) → D (˜ a ) ⊆ D ( a ) Entanglement Wedge Nesting (EWN): at the boundary: null deformation ∆ u ≥ 0 : u v D ( ˜ A ) ⊆ D ( A ) ˜ A z ∆ u A

  27. h T uu i ψ � ∂ 2 Proving QNEC using AdS/CFT u S EE J. Koeller, S. Leichenauer, 2016; C. Akers. V. Chandrasekaran, S. Leichenaber, A. Levin, A. Moghaddam, 2017 D ( ˜ A ) ⊆ D ( A ) → D (˜ a ) ⊆ D ( a ) Entanglement Wedge Nesting (EWN): at the boundary: null deformation ∆ u ≥ 0 : u v D ( ˜ A ) ⊆ D ( A ) ˜ A z ˜ ∆ u a into the bulk: a A Σ ˜ D (˜ a ) ⊆ D ( a ) (EWN) A Σ A Σ ˜ Σ A spacelike/null A RT surfaces dynamics

  28. h T uu i ψ � ∂ 2 Proving QNEC using AdS/CFT u S EE J. Koeller, S. Leichenauer, 2016; C. Akers. V. Chandrasekaran, S. Leichenaber, A. Levin, A. Moghaddam, 2017 D ( ˜ A ) ⊆ D ( A ) → D (˜ a ) ⊆ D ( a ) Entanglement Wedge Nesting (EWN): Σ ˜ Σ A spacelike/null A near boundary expansion: u v (F-G gauge) ˜ A z g uu = 16 π G ˜ ∆ u a dR d − 3 z d − 2 h T ab i ψ + O ( z d ) a A Σ ˜ 4 G A X i Σ A ( z ) = X i dR d − 1 z d ∂ i S EE ( A ) + O ( z d +1 ) ∂ A + Σ A 4 G dR d − 1 z d ∂ i S EE ( ˜ X i A ( z ) = X i A ) + O ( z d +1 ) A + Σ ˜ ∂ ˜

  29. h T uu i ψ � ∂ 2 Proving QNEC using AdS/CFT u S EE J. Koeller, S. Leichenauer, 2016; C. Akers. V. Chandrasekaran, S. Leichenaber, A. Levin, A. Moghaddam, 2017 D ( ˜ A ) ⊆ D ( A ) → D (˜ a ) ⊆ D ( a ) Entanglement Wedge Nesting (EWN): Σ ˜ Σ A spacelike/null A u v z → 0 ˜ A z ∆ u → 0 ˜ ∆ u a a A Σ ˜ A h T uu i ψ � ∂ 2 u S EE � 0 Σ A boundary QNEC

  30. Plan of the talk: Review of AdS/CFT proofs (ANEC + QNEC) Summary of general field theory proofs (ANEC + QNEC) Bulk modular flow in AdS/CFT Conclusion/outlooks

  31. Z ∞ dx + h ˆ Proving ANEC in relativistic QFTs T ++ i ψ � 0 −∞ T. Faulkner, R. Leigh, O. Parrikar, H. Wang, 2016

  32. Z ∞ dx + h ˆ Proving ANEC in relativistic QFTs T ++ i ψ � 0 −∞ T. Faulkner, R. Leigh, O. Parrikar, H. Wang, 2016 difficult using conventional QFT techniques surprising origin in information theory manifested by probing the entanglement structure

  33. Z ∞ dx + h ˆ Proving ANEC in relativistic QFTs T ++ i ψ � 0 −∞ T. Faulkner, R. Leigh, O. Parrikar, H. Wang, 2016 Modular Hamiltonian: K Ψ A = − ln ρ Ψ A ⊗ 1 A c + 1 A ⊗ ln ρ Ψ A c = H Ψ A − H Ψ A c A K Ψ K Ψ A | Ψ i = 0 A : H full → H full A c

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend