emissions concentrations impacts climate gtc yr ppmv
play

Emissions Concentrations Impacts Climate (GtC/yr) (ppmv) - PowerPoint PPT Presentation

Emissions Concentrations Impacts Climate (GtC/yr) (ppmv) Sea-level rise ( ) Heat waves Drought Extremes etc. Emissions Concentrations Impacts Climate (GtC/yr) (ppmv) Sea-level rise ( ) Heat


  1. Emissions Concentrations Impacts Climate (GtC/yr) (ppmv) Sea-level rise ( ℃ ) • Heat waves • Drought • Extremes • etc. •

  2. Emissions Concentrations Impacts Climate (GtC/yr) (ppmv) Sea-level rise ( ℃ ) • Heat waves • Drought • Extremes • etc. • Climate Sensitivity ( ℃ /ppmv) • Cloud feedbacks • Non-linear • Depends on timescale!

  3. Emissions Concentrations Impacts Climate (GtC/yr) (ppmv) Sea-level rise ( ℃ ) • Heat waves • Drought • Extremes • etc. • Carbon Cycle Climate Sensitivity • Ocean uptake ( ℃ /ppmv) • Land uptake • Cloud feedbacks • Feedbacks etc. • Non-linear • Depends on timescale!

  4. Carbon-Climate Response ( ℃ /GtC) Function of cumulative emissions • Basis for carbon budget, Paris, etc. • Emissions Concentrations Impacts Climate (GtC/yr) (ppmv) Sea-level rise ( ℃ ) • Heat waves • Drought • Extremes • etc. • Carbon Cycle Climate Sensitivity • Ocean uptake ( ℃ /ppmv) • Land uptake • Cloud feedbacks • Feedbacks etc. • Non-linear • Depends on timescale!

  5. Solomon 2009, PNAS Atmospheric CO 2 concentration Year

  6. Solomon 2009, PNAS Atmospheric CO 2 concentration Ocean heat content/thermal expansion Year

  7. Solomon 2009, PNAS Atmospheric CO 2 concentration Ocean heat content/thermal expansion Temperature response Year Year

  8. Solomon 2009, PNAS Atmospheric CO 2 concentration Ocean heat content/thermal expansion Temperature response Year Year + = Ocean carbon uptake Ocean heat uptake Constant temp. response!

  9. Solomon 2009, PNAS Atmospheric CO 2 concentration Ocean heat content/thermal expansion Temperature response Year Year + = Ocean carbon uptake Ocean heat uptake Constant temp. response! Ceasing emissions today will fix surface temperatures at today’s values, for hundreds of years.

  10. Solomon 2009, PNAS Atmospheric CO 2 concentration Ocean heat content/thermal expansion Temperature response Year Year + = Ocean carbon uptake Ocean heat uptake Constant temp. response! Ceasing emissions today will fix surface temperatures at today’s values, for hundreds of years. (sea level and deep ocean temps, however, will continue to rise)

  11. Value of CCR ? CCR ( ℃ /1000 GtC) Williams 2017, Journal of Climate CCR for model ensemble under emissions consistent with 1%/yr CO 2 increase Year

  12. Carbon-Climate Response ( ℃ /GtC) Function of cumulative emissions • Basis for carbon budget, Paris, etc. • Timescale-independent • Accounts for carbon cycle • Emissions Concentrations Impacts Climate (GtC/yr) (ppmv) Sea-level rise ( ℃ ) • Heat waves • Drought • Extremes • etc. • Carbon Cycle Climate Sensitivity • Ocean uptake ( ℃ /ppmv) • Land uptake • Cloud feedbacks • Feedbacks etc. • Non-linear • Depends on timescale • Ignores carbon cycle

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend