electronic refrigeration using superconducting tunnel
play

Electronic refrigeration using superconducting tunnel junctions - PowerPoint PPT Presentation

Electronic refrigeration using superconducting tunnel junctions Sukumar Rajauria I H. Courtois, F. W. J. Hekking and B. Pannetier Motivation Quantum nano-electronics: New devices with new functionality (SET, qubits, ) High


  1. Electronic refrigeration using superconducting tunnel junctions Sukumar Rajauria I H. Courtois, F. W. J. Hekking and B. Pannetier

  2. Motivation Quantum nano-electronics: • New devices with new functionality (SET, qubits, …) • High performance at (very) low temperature. On-chip cooling of a nano-device: • Improved efficiency, more compact, • N-I-S micro-coolers promising. Basic knowledge on: • N-I-S junction with a heat perspective, • Heat transport at micro- or nano-scale.

  3. Motivation Prototype cooler – N. I.S.T. First S-I-N-I-S cooler – Helsinki

  4. Quasiparticle tunneling in N-I-S junction Empty States Principle of N-I-S cooler E The superconductor energy gap induces an energy-selective tunneling. 2 ∆ Forbidden states N I N S T = 0 K

  5. Quasiparticle tunneling in N-I-S junction Empty States Principle of N-I-S cooler E The superconductor energy gap induces an energy-selective tunneling. 2 ∆ Forbidden ~kT states N I N S S T > 0 K

  6. Quasiparticle tunneling in N-I-S junction Empty States Quasiparticle tunnel current: ∞ I T 1 [ ] dE ∫ = − − I n ( E ) f ( E eV ) f ( E ) T S N S eR − ∞ N eV 2 1 I T eR n / ∆ T = 0.49T c 0 N I N S S T = 0.07T c -1 T > 0 K -2 -2 -1 0 1 2 eV/ ∆

  7. Quasiparticle tunneling in N-I-S junction Empty States Quasiparticle tunnel current: ∞ P Cool 1 [ ] dE ∫ = − − I n ( E ) f ( E eV ) f ( E ) T S N S eR − ∞ N eV Net Cooling Power: ∞ 1 1 [ [ ] dE ] dE ∫ ∫ = = − − − − − − P P ( ( E E eV eV ) ) n n ( ( E E ) ) f f ( ( E E eV eV ) ) f f ( ( E E ) ) Cool S N S 2 e R − ∞ N Joule heat Cooling N I N S S P Cool ≈ ( Ē /e). I T – V.I T T > 0 K

  8. Quasiparticle tunneling in N-I-S junction Net Cooling Power: Empty States ∞ 1 [ ] dE ∫ = − − − P ( E eV ) n ( E ) f ( E eV ) f ( E ) P Cool Cool S N S 2 e R − ∞ N P Cool ≈ ( Ē /e). I T – V.I T > 0 eV 0.06 0.04 T = 0.49Tc 2 R 2 N / ∆ P Cool e N I N S S 0.02 T > 0 K 0.00 T = 0.07Tc P Cool is symmetric to bias. -1.0 -0.5 0.0 0.5 1.0 eV/ ∆

  9. S-I-N-I-S junction E E S-I-N-I-S = 2 N-I-S P Cool P Cool junction in series Empty States I T I T 2 ∆ eV 2 ∆ eV Cooling power increases by a factor of 2 Occupied States I S S N I Better thermal isolation T > 0 K of N-island F. Giazotto, T. T. Heikkila, A. Luukanen, A. M. Savin and J. P. Pekola, Rev. Mod. Phys. 78 78, 217 (2006).

  10. Cooler with External thermometer Thermometer Junction 2 µm 0 10 Al Cooler OFF Cooler ON hermometer 288 mK 134 mK Cu -1 10 Al dI/dV The Cooler junctions -2 10 − ∆ eV ≈ I I exp( ) k B T 0 -2,0 -1,5 -1,0 -0,5 0,0 0,5 1,0 1,5 2,0 N V Thermometer / ∆ E. Favre-Nicollin et. al.

  11. Outline • Electronic temperature without thermometer • Thermal model • Andreev current contributions • Conclusions

  12. Quasiparticle diffusion based heating in S-I-N-I-S cooler heating in S-I-N-I-S cooler

  13. Cooler with NO external thermometer Probe Junction : N electrode is strongly thermalized, litlle cooling effect expected. 1 µm Al Al Cu Cu I Cooler junctions : N electrode is weakly coupled to external world, strong cooling effect expected .

  14. Cooling in S-I-N-I-S junction 1 µm Cooler Al Cooler Cu 1 10 Cu dI/dV I (norm.) Probe T bath = 304 mK 0.1 1 High resolution measurement (log scale) 0.01 0.1 − ∆ Probe eV ≈ I I exp( ) 0 0.001 0.01 k T B e Probe follows isothermal -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 prediction at T bath . V/(2) ∆

  15. Temperature determination 0 • two refrigerating junction are symmetric; 10 Cooler • N-metal is at quasi-equilibrium; -1 10 • Ideal superconductor; Isotherm n / ∆ I T eR T e = 304 mK -2 10 T e = 98 mK 600 -3 -3 10 10 450 T e (mK) -4 10 300 0.0 0.1 0.2 0.3 0.4 0.5 V (mV) 150 0 0.0 0.2 0.4 V (mV)

  16. Thermal model

  17. The thermal model Power flow from N electrons to the S electrodes remaining at base temperature 1 +∞ [ ] ( ) ∫ ( ) ( ) ( ) ( ) = − − + P V E eV n E f E f E eV dE Cool S S N eR − ∞ N S, T bath N electrons, T S, T bath e ( ) = Σ Electron - phonon coupling 5 5 P U T T - e ph ph e - N phonons, T ph ( ) = − Kapitza thermal coupling 4 4 P KA T T K bath ph Substrate phonons, T bath

  18. The thermal model - Hypothesis Power flow from N electrons to the S electrodes remaining at base temperature 1 +∞ [ ] ( ) ∫ ( ) ( ) ( ) ( ) = − − + P V E eV n E f E f E eV dE Cool S S N eR − ∞ N S, T bath N electrons, T S, T bath e ( ) = Σ Electron - phonon coupling 5 5 P U T T - e ph bath e - Hyp.: N phonons are N phonons, T ph = T bath strongly thermalized Kapitza thermal coupling Substrate phonons, T bath

  19. Hypothesis of phonon thermalized to the bath 1.0 For T ph = T bath 9 Wm -3 K -5 ) T bath (mK) Σ (*10 ( ) = Σ − ------------------------------------ 0.8 5 5 2 P U T T 292 1.21 Cool e bath 489 1.02 586 0.80 0.6 5 (T e /T bath ) ------------------------------------   5 T 1 2 P     0.4 = = − − 1 1 e Cool     Σ Σ   5 5 T T U U T T bath bath 0.2 Impossible to fit data with a given Σ 0.0 0 20 40 60 80 100 5 (pW/K 5 ) 2P Cool /T bath Fitted Σ much smaller than expected (2 nW.µm -3 .K -5 )

  20. The thermal model P P Cool Cool S, T bath N electrons, T S, T bath e ( ) = Σ − 5 5 Electron - phonon coupling P U T T − e ph ph e N phonons, T N phonons, T ph N phonons can be cooled N phonons can be cooled ( ) = − P KA T 4 T 4 Kapitza thermal coupling K bath ph Substrate phonons, T bath

  21. Phonon cooling 600 Two free fit parameters: Σ = 2 nW.µm -3 .K -5 500 K = 55 W.m -2 .K -4 400 T (mK) Kapitza coupling T bath smaller by a factor 300 of 3 than bulk. of 3 than bulk. T ph T 200 T e Phonon cooling model dominant at high experiment 100 temperature. 0 0.0 0.1 0.2 0.3 0.4 V (mV) Sukumar Rajauria, P. S. Luo, T. Fournier, F. W. J. Hekking, H. Courtois and B. Pannetier, PRL (2007) (2007)

  22. What now? • How much can we lower the electronic temperature ? • Can we reach below 10mK starting with a dilution temperature ? • What about the other contribution like Andreev Current etc. ? • What about the other contribution like Andreev Current etc. ? • Is a quantitative analysis possible ?

  23. Andreev current-induced dissipation dissipation

  24. Experiment at a very low temperature Zero-bias anomaly. 0 10 Not a linear leakage. -1 10 450 mK dI/dV norm. Cannot be fitted with a -2 10 10 340 340 smeared D.O.S or a non- smeared D.O.S or a non- equilibrium distribution in N. 240 -3 10 Likely two electron tunneling 90 process. -4 10 -0.8 -0.4 0.0 0.4 0.8 V(mV)

  25. Andreev reflection E < ∆ : No quasiparticle tunneling E Transmission probability proportional: t 2 For tunnel barrier: t is very small eV eV j A Andreev reflection probability vanishes for a tunnel barrier N N I S S T > 0 K A. F. Andreev, Zh. Eksp. Teor. Fiz. ’64 , D. Saint-James, J. Phys. (Paris) ‘64

  26. Confinement-enhanced of the Andreev current Nb-I-InGaAs junction Kastalsky et al PRL 91 van Wees-Klapwijk et al PRL 92 Confinement of electron by disorder + Quantum coherence Enables coherent addition of 2e tunneling amplitudes = Enhances sub gap conductivity = 2 G G . R A N diff

  27. Andreev current in disordered N-I-S junction Hekking and Nazarov model : Tunnel barrier in between N and S. Sub-gap conductivity is more sensitive to disorder. ∞ { } dE ∫ = − − + I ( V ) I ( E ) f ( E / 2 eV ) f ( E / 2 eV ) A N N − ∞ where I(E) is the spectral current 2 hG { } ∫ = + 2 n I ( E ) P ( r ) P ( r ) d r − π ν E E 3 16 Se 0 barrier where P E (r) is the cooperon. Length scale: Phase coherence length, bias or temperature cut off. Hekking et al PRL 93 and PRB 94, Pothier et al PRL 94

  28. Isotherm of Andreev and Quasiparticle current 1 10 Total current = Quasiparticle T bath = 90 mK Andreev current + Current Quasiparticle current 0 10 I Probe = I A + I T -1 10 I (nA) Fit parameters : Fit parameters : Andreev Current Andreev Current -2 -2 10 L ϕ = 1.5 µm Scaling factor 1.4 -3 10 Probe Good fit for the probe. -4 10 0.0 0.2 0.4 0.6 0.8 1.0 eV/ ∆

  29. Quasiparticle cooling fit 1 10 Total current = Cooler T bath = 90 mK Andreev current + Quasiparticle current Extra dissipation missing 0 10 I Cooler = I A + I T in the thermal model? I (nA) Fit parameters : -1 10 L ϕ = 1.5 µm L ϕ = 1.5 µm Scaling factor 0.5 K = 120 W.m -2 .K -4 -2 Andreev current added 10 in cooling model Quasiparticle cooling does not fit experiment. -3 10 0.0 0.2 0.4 0.6 0.8 1.0 eV/ ∆ eV/(2 ∆ )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend