effective nullstellensatz and generalized b ezout
play

Effective Nullstellensatz and Generalized B ezout identities Andr - PowerPoint PPT Presentation

Effective Nullstellensatz and Generalized B ezout identities Andr e GALLIGO (U.C.A., INRIA, LJAD, France) JNCF , CIRM February 2019. A NDR E G ALLIGO , N ICE Effective Nullstellensatz and Generalized B ezout identities Abstract


  1. Effective Nullstellensatz and Generalized B´ ezout identities Andr´ e GALLIGO (U.C.A., INRIA, LJAD, France) JNCF , CIRM February 2019. A NDR ´ E G ALLIGO , N ICE Effective Nullstellensatz and Generalized B´ ezout identities

  2. Abstract Among recent results on effective Hilbert’s Nullstellensatz: Z. Jelonek (Inventiones mathematicae, 2005) C. d’Andrea, T. Krick and M. Sombra (A. S. ENS, 2013) “[DKS:13]”. I will present our curent work with Z. Jelonek, for finding effective versions of sharp elimination processes. A NDR ´ E G ALLIGO , N ICE Effective Nullstellensatz and Generalized B´ ezout identities

  3. Hilbert Nullstellensatz f 1 , . . . , f s ∈ C [ x 1 , . . . , x n ] do not share any root in C n if and only if there exist g 1 , . . . , g s ∈ C [ x 1 , . . . , x n ] such that: 1 = g 1 f 1 + . . . + g s f s . Assuming deg ( f i ) ≤ d . If the degrees of the f i g i , is bounded by D , one finds the g i by solving a linear system of size about sD n . The coefficients of the g i belong to the field of coefficients of the f i , (e.g. Q ). A NDR ´ E G ALLIGO , N ICE Effective Nullstellensatz and Generalized B´ ezout identities

  4. Brief History: Upper bound D for the degrees Hermann, 1923: D = 2 ( 2 d ) 2 n − 1 . Brownawell, 1987: D = n 2 d n , in characteristic 0. Caniglia-Galligo-Heintz, 1988: D = d n ( n + 3 ) / 2 . Kollar, 1988: D = max ( d , 3 ) n . Fitchas-Giusti-Smietanski, 1995: D = d cn , for a constant c. (Using Straight-Line Programs). Sabia-Solerno, Sombra, 1995-97: Improvements for d = 2. Jelonek, 2005: D = d n , for s ≤ n . C. d’Andrea, T. Krick and M. Sombra, 2013: Parametric and arithmetic versions. A NDR ´ E G ALLIGO , N ICE Effective Nullstellensatz and Generalized B´ ezout identities

  5. Elimination and B´ ezout identities Let K be an algebraically closed field. When V ( f 1 , . . . , f s ) is of dimension 0 in K n , Z. Jelonek established in 2005, an elimination theorem. We generalize this result as follows. Assume V ( f 1 , . . . , f s ) has dimension q in K n ; deg ( f 1 ) ≥ . . . ≥ deg ( f s ) . There exist g 1 , . . . , g s ∈ C [ x ] and a non-zero polynomial φ ( x n − q , . . . , x n ) , such that: φ = g 1 f 1 + . . . + g s f s ; deg ( g i f i ) ≤ [ deg ( f 1 ) . . . deg ( f n − q − 1 )] deg ( f n ) . We first prove it in generic coordinates, then we use a deformation argument. A NDR ´ E G ALLIGO , N ICE Effective Nullstellensatz and Generalized B´ ezout identities

  6. Perron’s theorem Jelonek type approaches rely on generalizations of Perron’s theorem. Here, we will use one proved in [DKS:13]. Let k be an arbitrary field and consider the groups of variables t = { t 1 , . . . , t p } and x = { x 1 , . . . , x n } . Generalized Perron Theorem: Let Q 1 , . . . , Q n + 1 ∈ k [ t , x ] \ k [ t ] . d = ( d 1 , ..., d n + 1 ) , h = ( h 1 , . . . , h n + 1 ) . Then there exists α a y a ∈ k [ t ][ y 1 , . . . , y n + 1 ] \ { 0 } � E = a ∈ N n + 1 satisfying E ( Q 1 , . . . , Q n + 1 ) = 0 and such that, for all a ∈ supp ( E ) , we have 1 ) < d , a > ≤ ( � n + 1 i = 1 d j ) . 2 ) deg ( α a )+ < h , a > ≤ ( � n + 1 i = 1 d j )( � n + 1 h l d l ) . l = 1 A NDR ´ E G ALLIGO , N ICE Effective Nullstellensatz and Generalized B´ ezout identities

  7. Main Construction I = ( f 1 , . . . , f s ) ⊂ K [ x 1 , . . . , x n ] is an ideal, of dimension q < n . Take F n − q = f s and F i = � s j = i α ij f j for i = 1 , ..., n − q − 1 , where α ij are sufficiently general. Take J = ( F 1 , ..., F n − q ) , deg F n − q = d s , deg F i = d i for i ≤ n − q − 1, dimV ( J ) = q . Φ : K n × K ∋ ( x , z ) → ( F 1 ( x ) z , . . . , F n − q ( x ) z , x ) ∈ K n − q × K n is a (non-closed) embedding outside the set V ( J ) × K . Γ = cl (Φ( K n × K )) is an affine sub-variety of dimension n + 1 of K 2 n − q . Let π : Γ → K n + 1 be a generic projection and define Ψ := π ◦ Φ . In the generic coordinates X , we get Ψ( X , z ) = ( zF 1 + ℓ 0 ( x ) , zF 2 + X 1 . . . , zF n − q + X n − q − 1 , X n − q , . . . , X n ) . A NDR ´ E G ALLIGO , N ICE Effective Nullstellensatz and Generalized B´ ezout identities

  8. Continued By this genericity, the image of the projection π ′ : V ( J ) ∋ X �→ ( X n − q , . . . , X n ) ∈ K q + 1 is an hypersurface S , let φ ′ ( X n − q , . . . , X n ) = 0 describe S . Ψ = (Ψ 1 , . . . , Ψ n − q , X n − q , . . . , X n ) : K n × K → K n + 1 is finite outside the set V ( J ) × K . Hence, the set of non-properness of Ψ is contained in S = { T = ( T 1 , . . . , T n − q , X n − q , . . . , X n ) ∈ K n + 1 : φ ′ ( X ) = 0 } . Now, we apply to Ψ , Perron’s theorem with L = K ( z ) . There exists a non-zero polynomial W ( T 1 , . . . , T n + 1 ) ∈ L [ T 1 , . . . , T n + 1 ] such that W (Ψ 1 , . . . , Ψ n + 1 ) = 0 with the expected degree inequalities. A NDR ´ E G ALLIGO , N ICE Effective Nullstellensatz and Generalized B´ ezout identities

  9. End of proof There is a non-zero minimal poynomial ˜ W ∈ K [ T 1 , . . . , T n + 1 , Y ] such that (a) ˜ W (Ψ 1 ( x , z ) , . . . , Ψ n + 1 ( x , z ) , z ) = 0 , 2 , . . . , T d n − q (b) deg T ˜ W ( T d 1 1 , T d 2 n − q , T n − q + 1 , . . . , T n + 1 , Y ) ≤ � n − q − 1 d s d j , j = 1 The Y − leading coefficient b 0 ( T ) of ˜ W satisfies { T : b 0 ( T ) = 0 } ⊂ S , hence b 0 ( T ) depends only on coordinates T n − q + i + 1 = X n − q + i , for 0 ≤ i ≤ q . We now develop (a) in z and get E ( X , z ) = 0. The z − leading coefficient B ( X ) in E , is obtained either from b 0 ( X n − q , ..., X n ) or from terms corresponding to products, containing at least one of T i , i < n , hence containing at least one of F i . The B´ ezout identity follows from the fact that this coefficient B ( X ) vanishes identically. � A NDR ´ E G ALLIGO , N ICE Effective Nullstellensatz and Generalized B´ ezout identities

  10. Getting rid of the coordinates change We first establish a parametric version: We replace the field K by the algebraic closure of the fraction field of k [ t ] , where k is an infinite field, following [DKS:13]. Then, we use the following generic change of coordinates and its inverse. n n � � X i = x i + t a i , j x j ; x i = X i + t b i , j ( t ) X j . j = i + 1 j = i + 1 Set ¯ F j ( X , t ) = F j ( x ) . Notice that t divises ¯ F j ( X , t ) − F j ( X ) . After simpliflications, we have, n − q G j ( X , t ) ¯ � b 0 ( X n − q , ..., X n , t ) = F j ( X , t ) . j = 1 A NDR ´ E G ALLIGO , N ICE Effective Nullstellensatz and Generalized B´ ezout identities

  11. Continuation We cannot exclude the possibility of a remaining factor t p in the left hand, side with p > 0. So we need to perform several reduction steps. Let b 0 ( X , t )) = t p ( φ ( x ) + t φ 1 ( x , t )) . Setting t = 0, we obtain a non trivial relation 0 = � s j = 1 G j ( x , 0 ) F j ( x ) . Apply a change of coordinates to this relation to get 0 = � s j = 1 ¯ H j ( X , t ) ¯ F j ( X , t ) . The x − degree of G j ( x , 0 ) is bounded by the X − degree of G j ( X , t ) , and is equal to the X − degree of ¯ H j ( X , t ) . Now, � n − q j = 1 ( G j ( X , t ) − ¯ H j ( X , t )) ¯ F j ( X , t ) vanishes for t = 0, hence admits a factor t . We simplify the two sides of the previous equality by t , so t p − 1 ( φ ( x ) + t φ 1 ( x , t )) = � s j = 1 ( G j ( X , t ) − ¯ H j ( X , t )) ¯ F j ( X , t ) . � A NDR ´ E G ALLIGO , N ICE Effective Nullstellensatz and Generalized B´ ezout identities

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend