block additive functions on gaussian ingegers
play

BLOCK ADDITIVE FUNCTIONS ON GAUSSIAN INGEGERS Michael Drmota joint - PowerPoint PPT Presentation

BLOCK ADDITIVE FUNCTIONS ON GAUSSIAN INGEGERS Michael Drmota joint work with Peter Grabner Institut f ur Diskrete Mathematik und Geometrie Technische Universit at Wien michael.drmota@tuwien.ac.at www.dmg.tuwien.ac.at/drmota/


  1. BLOCK ADDITIVE FUNCTIONS ON GAUSSIAN INGEGERS Michael Drmota ∗ joint work with Peter Grabner ∗ Institut f¨ ur Diskrete Mathematik und Geometrie Technische Universit¨ at Wien michael.drmota@tuwien.ac.at www.dmg.tuwien.ac.at/drmota/ ∗ supported by the Austrian Science Foundation FWF, grants S9604 and S9605. Journ´ ees de Num´ eration, TU Graz, April 18, 2007

  2. Summary • Block additive functions • Asymptotics for generating functions • Distributional results • Mellin-Perron techniques

  3. Block additive functions q = − a + i ... basis of digital expansion in Z [ i ] (for an integer a > 0) N = { 0 , 1 , . . . , a 2 } ... set of digits z ∈ Z [ i ] = ⇒ ε j ( z ) q j � z = with ε j ( z ) ∈ N . j ≥ 0 (Formally we set ε j ( z ) = 0 for all negative integers j < 0.)

  4. Block additive functions F : N L +1 → R ... any given function (for some L ≥ 0) with F ( 0 ) = 0. � � � s F ( z ) = F ǫ j ( n ) , ǫ j +1 ( z ) , . . . , ǫ j + L ( z ) j s F ( z ) is a weighted sum over all subsequent digital patterns of length L + 1 of the digital expansion of z . • L = 0, F ( ǫ ) = ǫ = ⇒ s F ( z ) = sum-of-digits function. • L = 1, F ( ǫ, η ) = 1 − δ ǫ,η = ⇒ s F ( z ) = is number of digit changes. • F ( B ) = 1 for some specific block, F ( C ) = 0 for all blocks C � = B ⇒ s F ( n ) = the number of occurances of B in the digital expansion = of z .

  5. Block additive functions Recurrence z = η 0 + qv , ( ǫ 0 ( z ) , . . . , ǫ L ( z )) = B = ⇒ s F ( z ) = ǫ ( B ) + s F ( q ) with L � ǫ ( B ) = ( F (0 , . . . , 0 , η 0 , η 1 , . . . , η i ) − F (0 , . . . , 0 , 0 , η 1 , . . . , η i )) . i =0 Remark. ǫ 0 ( z ) = 0 = ⇒ ǫ ( B ) = 0.

  6. Asymptotics for generating functions MAIN THEOREM x s F ( z ) = Ψ( x, log | q | 2 N ) · N log | q | 2 λ ( x ) · � 1 + O ( N − κ ) � � | z | 2 <N uniformly in a complex neighborhood of x = 1. ( κ > 0) Ψ( x, t ) is analytic in x and periodic (with period 1) and Lipschitz con- tinuous in t . ( λ ( x ) will be defined in a moment.) x s F ( z ) ≪ N log | q | 2 λ ( | x | ) − κ � | z | 2 <N for x not close to the positive real line. ( κ > 0)

  7. Asymptotics for generating functions Definition of λ ( x ) � x ǫ ( B ) if last L digits of B = first L digits of C , A B,C ( x ) = 0 otherwise. A ( x ) = ( A B,C ( x )) B,C ∈N L +1 λ ( x ) = largest eigenvalue of A ( x ).

  8. Distributional results 1. Asymptotics for moments : � k � λ ′ (1) � 1 � k s F ( z ) k = � log | q | 2 N | q | 2 πN | z | 2 <N k − 1 � j Ψ j (log | q | 2 N ) + O ( N − κ ) . � � + log | q | 2 N j =0 Take derivatives with respect to x and set x = 1.

  9. Distributional results 2. Central limit theorem for s F ( z ) . | z | 2 < N : s F ( z ) ≤ λ ′ (1) � � 1 � σ 2 log | q | 2 N πN # | q | 2 log | q | 2 N + t = Φ( t ) + o (1) with σ 2 = λ ′′ (1) / | q | 2 − λ ′ (1) 2 / | q | 4 . (Φ( t ) denotes the normal distribution function) Setting x = e iu we get the characteristic function of the distribution of s F ( z ): 1 e iu s F ( z ) = E e iu S � πN | z | 2 <N

  10. Distributional results 3. Local limit theorem : Cauchy’s formula ( F is integer valued):   1 � # { z ∈ Z [ i ] : | z | 2 < N, s F ( z ) = k } =  x − k − 1 dx x s F ( z ) �   2 πi  | x | = x 0 | z | 2 <N Ψ( x 0 , log | q | 2 N ) λ ( x 0 ) log | q | 2 N x − k ∼ 0 � 2 π const . ( x 0 ) log | q | 2 N where x 0 is the saddle point defined by x 0 λ ′ ( x 0 ) k = log | q | 2 N . λ ( x 0 )

  11. Distributional results 4. Uniform distribution of s F ( z ) in residue classes . m ... positive integer with ( m, | q + 1 | 2 ) = 1, F integer valued: πN # { z ∈ Z [ i ] : | z | 2 < N, s F ( z ) ≡ ℓ mod m } = 1 1 m + O ( N − κ ) . x = e 2 πij/m ... m -th roots of unity + discrete Fourier analysis.

  12. Distributional results 5. Uniform distribution of ( αs F ( z ) mod 1) α irrational = αs F ( z ) is uniformly distributed modulo 1. ⇒ x = e 2 πiαh : 1 e 2 πihαs F ( z ) = O ( N − κ ) � πN | z | 2 <N + Weyl’s criterion

  13. Mellin-Perron techniques a ( z ) ... function on Z [ i ] a ( z ) � A ( s ) = | z | 2 s ... Dirichlet series of a ( z ) z ∈ Z [ i ] \{ 0 } Mellin-Perron = ⇒ � c + iT A ( s ) N s 1 � a ( z ) = 2 πi lim s ds T →∞ c − iT | z | <N for c > σ a (abscissa of absolute convergence of A ( s ))

  14. Mellin-Perron techniques Dirichlet series x s F ( z ) � G B ( x, s ) = | z | 2 s . z ∈ Z [ i ] \{ 0 } , ( ǫ 0 ( z ) ,...,ǫ L ( z ))= B Substitution z = η 0 + qv . → B ′ = ( η 1 , . . . , η L ) Notation: B = ( η 0 , η 1 , . . . , η L ) − 1st case: η 0 = 0 ( = ⇒ s F ( z ) = s F ( q )) x s F ( v ) 1 � G B ( x, s ) = | q | 2 s | v | 2 s v ∈ Z [ i ] \{ 0 } , ( ǫ 0 ( v ) ,...,ǫ L − 1 ( v ))= B ′ a 2 1 � = G ( B ′ ,ℓ ) ( x, s ) . | q | 2 s ℓ =0

  15. Mellin-Perron techniques 2nd case: η 0 > 0 ( = ⇒ s F ( z ) = ǫ ( B ) + s F ( q )) x s F ( η 0 ) | η 0 | 2 s + x ǫ ( B ) x s F ( v ) � G B ( x, s ) = | q | 2 s | v + η 0 /q | 2 s v ∈ Z [ i ] \{ 0 } , ( ǫ 0 ( v ) ,...,ǫ L − 1 ( v ))= B ′ x s F ( η 0 ) | η 0 | 2 s + x ǫ ( B ) x s F ( v ) � = | v | 2 s + H B ( x, s ) | q | 2 s v ∈ Z [ i ] \{ 0 } , ( ǫ 0 ( v ) ,...,ǫ L − 1 ( v ))= B ′ a 2 x s F ( v ) � = G ( B ′ ,ℓ ) ( x, s ) + H B ( x, s ) , | q | 2 s ℓ =0 where H B ( x, s ) = x s F ( η 0 ) | η 0 | 2 s + x ǫ ( B ) � � 1 1 x s F ( v ) � | v + η 0 /q | 2 s − . | q | 2 s | v | 2 s ( ǫ 0 ( v ) ,...,ǫ L − 1 ( v ))= B ′

  16. Mellin-Perron techniques A ( x ) = ( A B,C ( x )) B,C ∈N L +1 G ( x, s ) = ( G B ( x, s )) B ∈N L +1 H ( x, s ) = ( H B ( x, s )) B ∈N L +1 1 = G ( x, s ) = | q | 2 s A ( x ) G ( x, s ) + H ( x, s ) ⇒ or � − 1 � 1 G ( x, s ) = I − | q | 2 s A ( x ) H ( x, s )

  17. Mellin-Perron techniques Dominant polar singularities of G B ( x, s ): 2 πik ( k ∈ Z ) . s k = log | q | 2 λ ( x ) + log | q | 2 � � 1 (det I − | q | 2 s A ( x ) = 0) � Perron-Frobenius: G ( x, s ) = G B ( x, s ) B � c + iT G ( x, s ) N s 1 x s F ( z ) = � 2 πi lim s ds T →∞ c − iT | z | 2 <N

  18. Mellin-Perron techniques Shift of integration c+iT c-iT

  19. Mellin-Perron techniques Shift of integration c'+iT c+iT c-iT c'-iT

  20. Mellin-Perron techniques Shift of integration c'+iT c+iT c-iT c'-iT

  21. Mellin-Perron techniques � c ′ + iT D ( s k , x ) N s k G ( x, s ) N s 1 x s F ( z ) = lim � � + 2 πi lim s ds s k c ′ − iT T →∞ T →∞ | z | 2 <N | k |≤ T with D ( s k , x ) = res( G ( x, s ) , s = s k ) Problem: NO ABSOLUTE CONVERGENCE !!!

  22. Mellin-Perron techniques Notation: e ( x ) = e 2 πix , { x } = x − ⌊ x ⌋ , � t � = min {{ x } , {− x }} Lemma 1 α + 2 πik = e − α { t } e ( kt ) � lim 1 − e − α T →∞ | k |≤ T More precisely, if t �∈ Z e ( Tt ) − e ( kt ) e ( kt ) 2 πi � � α + 2 πik = ( α + 2 πik )( α + 2 πi ( k − 1)) 1 − e ( t ) k ≥ T k>T � � 1 = O , T � t � and also 1 � 1 � � α + 2 πik = O T | k |≥ T

  23. Mellin-Perron techniques Lemma 2 a and c are positive real numbers: � c + iT a c � � 1 a s ds � � s − 1 � ≤ ( a > 1) , � � � � 2 πi πT log a c − iT � � c + iT a c � � 1 a s ds � � � ≤ (0 < a < 1) , � � � 2 πi � πT log(1 /a ) s c − iT � � c + iT � � 1 s − 1 a s ds � ≤ C � � ( a = 1) . � � � 2 πi 2 � T c − iT � Further, if 0 < a, b < 1 or if a, b > 1 then � c + iT � � 1 1 a c sin( T log a ) − b c sin( T log b ) c − iT ( a s − b s ) ds s = 2 πi πiT log a log b a c b c � � �� 1 log a − + O T log b

  24. Thank You!

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend