dynamical formation of black hole x ray binaries
play

Dynamical formation ! of black-hole X -ray binaries Ross Church ! - PowerPoint PPT Presentation

Dynamical formation ! of black-hole X -ray binaries Ross Church ! Department of Astronomy and Theoretical Physics ! Lund University ! ! ! With thanks to: ! Melvyn B. Davies (Lund), Seppo Mikkola (Turku) ! Black-hole X -ray binaries in GCs


  1. Dynamical formation ! of black-hole X -ray binaries Ross Church ! Department of Astronomy and Theoretical Physics ! Lund University ! ! ! With thanks to: ! Melvyn B. Davies (Lund), Seppo Mikkola (Turku) !

  2. Black-hole X -ray binaries in GCs Miller-Jones et al. (2015)

  3. Is the tidal capture of black holes enhanced by binaries?

  4. Tidal capture of BHs by binaries Two aspects: 1. Black hole - star tidal interactions SPH 2. Three-body (BH + binary) simulations ARCHAIN

  5. Setup 5 M � black hole 0 . 6 M � or 0 . 8 M � main-sequence star Range of pericentre separations Measure: �✏ = � E/µ δ M ? α J = J final /J initial

  6. Results q = 1 R � q = 2 R � Very strong function of pericentre separation

  7. Results Change in specific energy 1 1 1.25 1.5 1.75 0 . 1 2 2.125 Lines are fits using 2.25 2.375 functional form of − δ� (Solar units) 2.5 0 . 01 2.625 Fabian, Pringle & 2.75 Rees (1975) 10 − 3 M 1 = 0 . 8 M � 10 − 4 M 1 = 0 . 6 M � exp (f1c [log ( x ) ]) exp (f106 [log ( x ) ]) 10 − 5 1 2 3 4 q = r min / R �

  8. Tidal capture of BHs by binaries Two aspects: 1. Black hole - star tidal interactions SPH 2. Three-body (BH + binary) simulations ARCHAIN

  9. Simulation setup 3-body scattering experiment (binary + black hole) M 1 = 0 . 8 M � M 2 = 0 . 6 M � M • = 5 M � Binary initially 100 au, thermal eccentricity distribution Impact parameter distribution d N d b ∝ b v ∞ = 10 km / s

  10. Outcomes: flyby Flyby Flyby 500 3000 250 1000 300 x i,j / R � y/ R � 0 100 30 − 250 10 − 500 − 500 − 250 0 250 500 − 75000 − 50000 − 25000 0 − 10 5 x/ R � ( t − t 0 ) / τ � Star 1 Star 2 BH x 1 , 2 x 1 , 3 x 2 , 3

  11. Outcomes: exchange Clean exchange Clean exchange 2000 3000 1000 1000 x i,j / R � y/ R � 300 0 100 − 1000 30 − 2000 10 − 2000 − 1000 0 1000 2000 − 80000 − 40000 0 40000 80000 x/ R � ( t − t 0 ) / τ � x 1 , 2 x 1 , 3 x 2 , 3 Star 1 Star 2 BH

  12. Outcomes: collision Direct collision Direct collision 2000 5000 1000 2000 1000 x i,j / R � y/ R � 0 500 − 1000 200 100 − 2000 − 2000 − 1000 0 1000 2000 − 10 5 − 75000 − 50000 − 25000 0 x/ R � ( t − t 0 ) / τ � Star 1 Star 2 BH x 1 , 2 x 1 , 3 x 2 , 3

  13. Outcomes: "dirty" capture Type A capture (star survives) Type A capture (star survives) 2000 10000 1000 1000 x i,j / R � y/ R � 0 100 − 1000 10 − 2000 1 − 2000 − 1000 0 1000 2000 0 5 × 10 6 10 7 1 . 5 × 10 7 2 × 10 7 x/ R � ( t − t 0 ) / τ � Star 1 Star 2 BH x 1 , 2 x 1 , 3 x 2 , 3

  14. Outcomes: "dirty" capture Type A capture (star survives) Type A capture (star survives) 10000 10000 1000 1000 x i,j / R � x i,j / R � 100 100 10 10 1 1 0 5 × 10 6 10 7 1 . 5 × 10 7 2 × 10 7 1 . 675 × 10 7 1 . 7 × 10 7 1 . 725 × 10 7 1 . 75 × 10 7 1 . 775 × 10 7 ( t − t 0 ) / τ � ( t − t 0 ) / τ � x 1 , 2 x 1 , 3 x 2 , 3 x 1 , 2 x 1 , 3 x 2 , 3

  15. Outcomes: "messy" capture Type B capture (star shredded) Type B capture (star shredded) 2000 10000 1000 1000 x i,j / R � y/ R � 0 100 − 1000 10 − 2000 1 − 2000 − 1000 0 1000 2000 0 5 × 10 6 10 7 1 . 5 × 10 7 x/ R � ( t − t 0 ) / τ � Star 1 Star 2 BH x 1 , 2 x 1 , 3 x 2 , 3

  16. Outcomes: "messy" capture Type B capture (star shredded) Type B capture (star shredded) 10000 1000 1000 x i,j / R � x i,j / R � 100 100 10 10 1 1 0 5 × 10 6 10 7 1 . 5 × 10 7 9 . 75 × 10 6 10 7 1 . 025 × 10 7 1 . 05 × 10 7 1 . 075 × 10 7 ( t − t 0 ) / τ � ( t − t 0 ) / τ � x 1 , 2 x 1 , 3 x 2 , 3 x 1 , 2 x 1 , 3 x 2 , 3

  17. Three routes to a close MS-BH binary 1. Undergo a dirty exchange and circularise 1 Inner ⋆ 1, type A Blue circles: ! Inner ⋆ 2, type A Inner ⋆ 1, type B dirty exchanges ! Inner ⋆ 2, type B 0 . 8 q = 2 . 75 R � (star survives) q = 3 R � q = 4 R � 0 . 6 e 0 . 4 Final binary ! Red circles: ! too wide to ! messy exchanges ! 0 . 2 circularise (star destroyed) 0 10 30 100 300 1000 a/ R �

  18. Three routes to a close MS-BH binary 2. Form a dirty triple and circularise Dirty triples, inner orbit properties, a i = 100 R � 0 . 5 Inner ⋆ 1, type A Inner ⋆ 2, type A Inner ⋆ 1, type B Artificial effect: ! Inner ⋆ 2, type B 0 . 4 q = 2 . 75 R � tidal cut-off at q = 3 R � q = 4 R � 4 R � 0 . 3 e 0 . 2 0 . 1 Red: messy Blue: dirty 0 4 5 6 a/ R �

  19. Three routes to a close MS-BH binary 3. A messy triple leads to common-envelope evolution Dirty triples, inner orbit properties, a i = 100 R � 0 . 5 Inner ⋆ 1, type A Inner ⋆ 2, type A Inner ⋆ 1, type B Inner ⋆ 2, type B 0 . 4 q = 2 . 75 R � q = 3 R � q = 4 R � 0 . 3 e 0 . 2 0 . 1 Red: messy 0 4 5 6 a/ R �

  20. Three routes to a close MS-BH binary 3. A messy triple leads to common-envelope evolution Dirty triples, outer orbit properties, a i = 100 R � 1 Inner ⋆ 1, type A Inner ⋆ 2, type A Inner ⋆ 1, type B Inner ⋆ 2, type B 0 . 8 q = 10 R � q = 30 R � q = 100 R � q = 300 R � 0 . 6 e 0 . 4 0 . 2 0 1000 10000 10 5 a/ R �

  21. Coming soon 1. Numbers and rates 2. Other stellar masses 3. MS-BH + MS rather than MS-MS + BH

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend