2014 KSTAR conference, Mayhills Resort, Gangwon-do, Korea, Feb. 24-26, 2014 *Work supported by the NRF Korea under grant no. NRF-2009-0082507 and the U.S. DoE under contract no. DE-FG-02-99ER54531. Sudden mode number changes during the ELM evolution J. E. Lee 1 , J. Lee 1 , M. Kim 1 , G. S. Yun 1 , W. Lee 1 , H. K. Park 2 , C. W. Domier 3 , N. C. Luhmann, Jr. 3 , S. G. Lee 4 and KSTAR team 1 Pohang University of Science and Technology, Pohang, Korea 2 Ulsan National Institute of Science and Technology, Ulsan, Korea 3 University of California at Davis, Davis, USA 4 National Fusion Research Institute, Daejeon, Korea
Abstract The toroidal mode number n is an important parameter for understanding the dynamics of the edge localized modes (ELMs) in the perspective of the linear stability boundary of the peeling-ballooning modes. During the 2012 KSTAR campaign, sudden changes of the toroidal mode number were frequently observed during the ELM evolution process in several H-mode discharges (e.g., # 7323, #7328, #8114, #8142). In addition, the lab frame frequency of the ELM filaments also was changed substantially at each transition. For instance, the frequency was changed from ~30 to 10 kHz when n changed from 8 to 5. Two types of transition processes were identified : overlapping transition and step transition. The former is characterized by the coexistence of two coherent filament structures with different mode numbers the latter is characterized by absence of the coherent filament structure during the transition. These phenomena may provide a critical insight for ELM evolution and crash dynamics. In particular, the present observations may help understanding the previous observation of the ELM crash dynamics where a sudden reduction of the mode number often occurred before the ELM crash.
KSTAR ECEI system Microwave camera for 2D ๐ผ ๐ fluctuation measurements ๏ง Simultaneous imaging of LFS, HFS (dual arrays) ๏ง 3D imaging (two systems) ๏ง Flexible vertical coverage (triplet zoom optics) ๏ง Flexible radial coverage (variable LO frequencies) ECEI-1 Zoom lens Zo nses Foc ocus lens nses ECEI-2 Antenna/M /Mix ixer Arrays Local Osci Loc scilla lators ~6 m Lenses B t , , I p โข # of channels in each array : ๐๐. ๐ยฐ Detector 24 ร 8 = 192 ECEI-2 ECEI-1 โข Space resolution : ~ 1 โ 2๐๐ โข ๐ผ ๐ resolution , ๐๐ ๐ / ๐ ๐ โ 2% โข Time resolution : 1~2๐๐ก * G. S. Yun et al., Rev. Sci. Instrum., 81, 10D930 (2010) *H. K. Park, 24 th IAEA FEC
Observation of sudden mode number transition < KSTAR observation ( ex. # 7328 ) > Divertor D-alpha intensity 2.5 2 ex) #7328 A.U. 1.5 1 B T = 2.25 T , I p = 760kA , 0.5 0 W = 490kJ , NBI = 3 MW , 40 40 Spectrogram of ECEI (GFS 15-3) n e = 3.6 ( 10 19 /๐ 3 ) , q 95 ~ 4.9 Frequency(kHz) 8 8 30 8 7 6 7 20 20 5 < JET observation >* 5 6 5 6 5 10 5 5 5 5 0 Pulse No: 43166, Toroidal Mode Numbers 4.38 4.4 4.42 4.44 4.46 4.48 4.5 4.52 4.54 10 Time(s) 25 8 20 6 โข The toroidal mode number transitions of ELMs during the n=9 4 15 f(kHz) inter ELM period were observed in some 2012 KSTAR ELMy 2 n=10 H-mode discharges. 10 0 n=9 n=8 -2 โข 5 Similar transitions were also observed at JET in 2004 -4 ELM 0 -6 21.15 21.20 21.25 21.10 * C.P.Perez et al., Nucl. Fusion 44 (2004) 609-623 Time
Characteristic of the transition phase After transition phase, toroidal mode number (n), poloidal mode spacing ( ฮป ), lab frame frequency(f), of the ELM filaments were changed. < ex. # 7328 > ECEI GFS 15-3 (bandpass 7 35kHz) Through the transition ๐๐ ๐๐๐ n (8 5) / ฮป ( ~ 28cm ~ 43cm) / f ( ~ 30kHz ~ 10kHz) ๐ ๐๐๐ n is estimated by 20 toroidal Mirnov coils at KSTAR ฮป is estimated by spatial correlation method using ECEI data 5 f is estimated by spectrogram of ECEI data n=8 ( ~ 30kHz) Frequency(kHz) t = 4.420s t = 4.417s n=5 ( ~๐๐ kHz) 2D ECEI Image ๐๐ ๐๐๐ 5 Time (s) ๐ ๐๐๐ Toroidal mirnov coil data ฮป (~28cm) ฮป (~43cm) Toroidal angle Toroidal angle separatrix Time (s) Time (s)
๐ค ๐๐๐โ = โ๐ค ๐ข๐๐ ร tan ๐ + ๐ค ๐๐๐ ๐ ๐๐ ๐ ๐ฐ๐ฃ๐๐ฑ ๐ฐ ๐ฎ๐ฉ๐ฌ ๐ค ๐๐๐โ : apparent poloidal rotation in the ECEI view ๐ค ๐ข๐๐ : plasma toroidal rotation ๐ค ๐๐๐ : true poloidal flow ๐ฐ ๐ฎ๐ฉ๐ฌ ร ๐ฎ๐๐จ(๐) ๐ โ : major radius at the outboard midplane a ๐ ๐ฎ ๐ค ๐๐๐ โ + ๐ค ๐๐๐ = โ ๐ค ๐ข๐๐ tan ๐ 2๐๐ โ ฮป 2๐๐ โ ฮป ฮป < ex. # 7328 > โ๐ = tan ๐ 2๐๐ โ โ 1 ๐ข๐๐ tan ๐ 2๐๐ โ โ = โ๐ ๐ + ๐ ๐๐๐ ๐๐๐ ฮป ฮป 1 1 0.28 = ~ โ 2.72 Calculation : 0.157 ร 2๐(2.21) 0.43 โ < relation of variation between n & ฮป > Observation : 5 โ 8 = -3 โ๐ = tan ๐ 2๐๐ โ โ 1 ฮป * โ โ๐ ๐ข๐๐ โ๐ = โ๐ ๐๐๐ โ > < relation of variation between n & f pol ~200km/s Calculation : โ 2ฯ(2.21m) ร (5-8) = ~ 43kHz ๐ข๐๐ tan ๐ 2๐๐ โ โ 1 โ = โ๐ โ๐ Observation : - 10 โ (-30) = ~ 20kHz ๐๐๐ ฮป โ = โ๐ โ๐ ๐ข๐๐ (โ๐) ๐๐๐ Mode number change alone can not explain the change of the frequency. * J. Lee submitted to Nuclear Fusion (2013)
Two types of mode number transition โ < ex. # 7323 > ECEI LFS 15-4 (bandpass : 8 19kHz) n=6 ( ~ 17kHz) Frequency(kHz) ๐๐ ๐๐๐ n=5 ( ~ 13kHz ) ๐ ๐๐๐ 4 โ โก Frequency(kHz) Time (s) โ Step transition 4 Time (s) Step transition is characterized by absence of โก coherent filament. n=6 ( ~ 17kHz) Frequency(kHz) โก Overlapping transition n=5 ( ~ 12kHz) Overlapping transition is characterized by existing two coherent filaments with different mode number at the same time Time (s)
โ Step transition Spectrogram of ECEI (LFS 15-4) Frequency(kHz) Through the step transition n=5 ( ~ 13kHz) n=6 ( ~ 17kHz) n (6 5) / ฮป ( ~ 46cm ~ 52cm) / f ( ~ 17kHz ~ 13kHz) Step transition phase takes about 80ms ( 3.1598s ~ 3.1618s ) Time (s) ๐๐ ๐๐๐ Absence of coherent filament ๐ ๐๐๐ t = 3.1625s t = 3.1608s t = 3.1595s Step transition ๐๐ ๐๐๐ ๐ ๐๐๐ Toroidal angle ฮป (~45cm) ฮป (~52cm) Time (s) Time (s)
โก Overlapping transition Spectrogram of ECEI (LFS 15-4) n=6 ( ~ 17kHz) Through the step transition Frequency(kHz) n (5 6) / ฮป ( ~ 52cm ~45 cm) / f ( ~ 12kHz ~ 17kHz) n=5 ( ~ 12kHz) Overlapping transition phase takes about 1.2ms ( 3.1574s ~ 3.1586s ) Time (s) Overlapping transition Mirnov data ECEI LFS 15-4 Toroidal angle ๐๐ ๐๐๐ n=5 band pass : 8 ~ 1 4kHz ๐ ๐๐๐ Toroidal angle ๐๐ ๐๐๐ n=6 band pass : 15 ~ 19kHz ๐ ๐๐๐ Toroidal angle ๐๐ ๐๐๐ Overlapping ๐ ๐๐๐ band pass : 8 ~ 19kHz Time (s) Time (s) Time (s)
Note of the transition ECEI LFS 15-4 (bandpass : 8 19kHz) ๏ผ Change of mode number 4 and 8 ๐๐ ๐๐๐ ๏ผ Mode number can be changed ๐ ๐๐๐ several times during the single Time (s) inter ELM period ๏ผ The mode number is changed large -> small or small -> large ๏ผ no noticeable changes in the ๐๐ ๐๐๐ ๐ ๐๐๐ main plasma parameters ฮป (~52cm) ฮป (~45cm) ๏ผ Step transition lasts 100 ฮผ s ~ 10ms ๏ผ Overlapping transition lasts 100 ฮผ s ~ 1ms ๏ผ step transition and overlapping transition are able to coexist Mode beating (existing two modes) during single inter ELM period
Discussion & Future work The Mode transition can be explained? โข S. Saarelma, et al., Nucl. Fusion, 52, 103020 (2012) < Stability diagram > Normalized plasma pressure gradient( ๐ฝ) ๐ฝ = โ๐ 0 ๐๐ ๐๐ ๐ 2๐ 2 2๐ 2 ๐ 0 ๐ฯ ๐ฯ p : plasma pressure, ฯ : poloidal flux, V : plasma volume , ๐ 0 : major radius Local current and plasma pressure gradient at the edge can influence the unstable mode number of the ELMs Is it possible to change the plasma parameters in a few hundreds ฮผ s and a few tens of ms?
Discussion & Future work The observation can be an one of clues to understand ELM crash? Time trace of an ELM โข G. S. Yun et al., Phys. Plasmas , 19 , 056114 (2011) ๏ผ short transient period of < 50 ฮผ s between the saturated state and Time(ms) the final crash phase. ๏ผ The filaments almost disappear from the ECEI view ๏ผ The abrupt change in the poloidal mode number Step transition is related with the short transient period R(m) R(m) R(m) ๏ผ Using the stability code, make the stability diagram for the mode transition phenomena ๏ผ Understanding the reason why difference transition types are appeared needs further research
Recommend
More recommend