droplet stochastic activation and spectrum broadening
play

Droplet stochastic activation and spectrum broadening in the - PowerPoint PPT Presentation

Droplet stochastic activation and spectrum broadening in the presence of supersaturation fluctuations Gustavo C. Abade 1 , W. W. Grabowski 2 , H. Paw lowska 1 1 University of Warsaw, Faculty of Physics, Institute of Geophysics, Warsaw, Poland


  1. Droplet stochastic activation and spectrum broadening in the presence of supersaturation fluctuations Gustavo C. Abade 1 , W. W. Grabowski 2 , H. Paw� lowska 1 1 University of Warsaw, Faculty of Physics, Institute of Geophysics, Warsaw, Poland 2 National Center for Atmospheric Research, Boulder, USA July 9, 2018

  2. LES of cloud-scale flow cloud updraft and interfacial instabilities (entraiment) Lasher-Trapp et al. , QJRMS, 131 (2005)

  3. Microphysics LES grid box Droplet growth moist air d r d t = 1 water r D � S � droplet ∆ r Mean-field supersaturation � S � = e − 1 e s ∆ ∆ ∼ tens of meters (inertial range)

  4. Microphysical variability at sub-grid scales (SGS) ◮ S = � S � + S ′ ◮ Entrainment of unsaturated air + CCN Entraiment Entraiment ◮ SGS mixing CCN ◮ Activation/deactivation ◮ Lagrangian method

  5. Stochastic growth K¨ ohler curve and potential S c stable unstable S eq ( r ) r d r � S − A r + B � d t = D r 3 Koehler curve 0 x ≡ r 2 S = � S � + S ′ Koehler potential V ( r ) 〈 S 〉 < S c 〈 S 〉 = S c 〈 S 〉 > S c d x d t = − ∂V ∂x + 2 DS ′ r d 0.1 r c 1 10 r [ µ m]

  6. Stochastic activation and growth driven by supersaturation fluctuations S c S eq ( r ) r d r � S − A r + B � d t = D 0 r 3 haze cloud droplet droplet 0 < 〈 S 〉 < S c x ≡ r 2 S = � S � + S ′ V 〈 S 〉 ( r ) SA SDA d x d t = − ∂V r d r 1 r c r 2 ∂x + 2 DS ′ r Stochastic activation (SA) / deactivation (SDA)

  7. Supersaturation and velocity fluctuations d S ′ d t = − S ′ − S ′ i i i + aW ′ i ( t ) τ c τ m T and p 1 τ c ∼ (condensation) � W � W ′ decreasing DN � r � i S i τ m ∼ eddy turnover time (mixing) ◮ Statistics of W ′ ( t ) ? Grabowski and Abade, JAS, 74 (2017)

  8. Entraining cloud parcel stochastic entrainment events � W � cooler λ ∼ 200 m decreasing pressure and temperature entraiment of unsaturated air entrainment rate µ = 1 d m + CCN cool LCL m d t warm Krueger et al. , JAS, 54 (1997); Romps and Kuang, JAS, 67 (2010)

  9. Droplet-size distribution after a 1-km parcel rise 0.3 (a) adiabatic, non-turbulent 0.25 PDF( r > r c ) ( µ m -1 ) adiabatic, turbulent 8.8 entraining, non-turbulent 0.2 entraining, turbulent 0.15 0.1 0.05 0 1 (b) PDF( r ) ( µ m -1 ) 0.1 0.01 0 5 10 15 20 25 r ( µ m)

  10. Stochastic CCN activation adiabatic parcel

  11. Stochastic CCN activation 1 1 1 1 (a) (c) Adiabatic parcel Entraining parcel 0.5 0.5 0.5 0.5 〈 S 〉 (%) 〈 S 〉 (%) 0 0 0 0 -0.5 -0.5 -0.5 -0.5 adiabatic non-turbulent entraining non-turbulent adiabatic turbulent entraining turbulent -1 -1 -1 -1 (b) (d) 1 1 1 1 0.8 0.8 0.8 0.8 N c / N CCN N c / N CCN 0.6 0.6 0.6 0.6 0.4 0.4 0.4 0.4 0.2 0.2 0.2 0.2 0 0 0 0 0 0 50 50 100 100 150 150 200 200 0 0 50 50 100 100 150 150 200 200 t [s] t [s]

  12. 2-D kinematic simulations 1.5 ◮ Prescribed flow u ( r ) 1.2 ◮ Balance equations for entropy LCL 0.9 and water vapor z (km) 0.6 ◮ Super-droplets 0.3 ◮ ǫ = 10 − 3 m 2 s − 3 everywhere 0 0 0.3 0.6 0.9 1.2 1.5 x (km)

  13. 2-D kinematic simulations 1.5 ◮ Prescribed flow u ( r ) 1.2 ◮ Balance equations for entropy LCL 0.9 and water vapor z (km) 0.6 ◮ Super-droplets 0.3 ◮ ǫ = 10 − 3 m 2 s − 3 everywhere 0 0 0.3 0.6 0.9 1.2 1.5 x (km)

  14. 2-D kinematic simulations Droplet-size PDF 1.5 0.8 1.4 (a) z = 1.4 km 1.2 1 0.7 0.8 non-turbulent ε = 10 -3 m 2 s -3 1.2 0.6 0.4 0.6 0.2 Liquid-water mixing ratio (g/kg) 1.2 0.5 (b) z = 1.2 km 0.9 1 PDF( r ) [ µ m -1 ] 0.8 z (km) 0.4 0.6 0.4 0.6 0.2 0.3 1.4 (c) z = 1.0 km 1.2 0.2 1 0.3 0.8 0.6 0.1 0.4 0.2 0 0 0 2 4 6 8 10 12 14 16 0 0.3 0.6 0.9 1.2 1.5 r [ µ m] x (km)

  15. 2-D kinematic simulations Droplet-size PDF 1.5 0.8 1.4 (a) (a) z = 1.4 km 1.2 1 0.7 0.8 non-turbulent (b) ε = 10 -3 m 2 s -3 0.6 0.6 0.4 0.2 Liquid-water mixing ratio (g/kg) (c) 1.2 0.5 (b) z = 1.2 km 0.9 1 PDF( r ) [ µ m -1 ] 0.8 z (km) 0.4 0.6 0.4 0.6 0.2 0.3 1.4 (c) z = 1.0 km 1.2 0.2 1 0.3 0.8 0.6 0.1 0.4 0.2 0 0 0 2 4 6 8 10 12 14 16 0 0.3 0.6 0.9 1.2 1.5 r [ µ m] x (km)

  16. Microphysical profiles horizontally averaged 1.5 1.5 1.5 non-turbulent turbulent 1.4 1.4 1.4 1.3 1.3 1.3 1.2 1.2 1.2 z (km) 1.1 1.1 1.1 1 1 1 0.9 0.9 0.9 0.8 0.8 0.8 -0.1 -0.05 0 0.05 0.1 0 0.2 0.4 0.6 0.8 1 0 0.5 1 1.5 2 2.5 3 3.5 〈 S 〉 (%) N droplets / N CCN σ r [ µ m]

  17. Summary and outlook ◮ Simple model to mimic SGS variability ◮ Straightforward for super-droplets, difficult for bin microphysics ◮ Important for rain development through collision/coalescence ◮ Thermodynamic feedback: extends the distance of activation ◮ Future: couple the SGS scheme with dynamic LES

  18. Acknowledgements

  19. Vertical velocity fluctuations Stationary homogeneous isotropic turbulence � W ′ ( t ) � = 0 � W ′ (0) W ′ ( t ) � = σ 2 W ′ exp ( −| t | /τ m ) Kolmogorov scaling (inertial subrange) L τ m ∼ L 2 / 3 W ′ ∼ ( Lε ) 2 / 3 σ 2 ε 1 / 3 ε = � ν ( ∇ u ) 2 �

  20. Super-droplets (SDs) Shima et al. (2009), Arabas et al. (2015) N droplets ∼ 10 11 − 10 14 ◮ Multiplicities: 3 2 3 1 1 3 3 ξ 1 = 6 , ξ 2 = 10 , . . . 3 3 2 2 3 2 1 3 ◮ SDs have the same attributes 3 3 3 2 2 1 2 3 ( r, S ′ , W ′ , . . . ) 3 3 2 1 1 2 3 2 ◮ Well-mixed 10 − 100 meters

  21. Aerosol indirect effect induced by turbulence 0.14 τ m ≈ 45 s 0.12 300 200 PDF( r > r c ) [ µ m -1 ] 0.1 τ c ≈ 1 s 100 50 0.08 N CCN = 25 cm -3 0.06 0.04 τ c ≈ 8 s 0.02 0 0 5 10 15 20 25 30 35 40 r [ µ m] ◮ fast × slow microphysics d S ′ d t = − S ′ + aW ′ ( t ) , τ S ∼ min { τ c , τ m } τ S Chandrakar et al. , PNAS, 113 (2016); Siebert and Shaw, JAS, 74 (2017)

  22. Evolution of the moments 20 20 (a) 16 16 〈 r 〉 ( µ m) 12 12 adiabatic, non-turbulent 8 8 adiabatic, turbulent entraining, non-turbulent 4 4 entraining, turbulent (b) 4 4 3 3 σ r ( µ m) 2 2 1 1 0 0 0 0 200 200 400 400 600 600 800 800 1000 1000 t (s)

  23. Sensitivity to other model parameters 0.16 ε = 10 1 cm 2 s -3 (a) ε = 10 2 cm 2 s -3 0.12 ε = 10 3 cm 2 s -3 0.08 τ t ≈ 40 s 0.04 0 PDF( r > r c ) [ µ m -1 ] ε = 10 1 cm 2 s -3 (b) ε = 10 2 cm 2 s -3 0.12 ε = 10 3 cm 2 s -3 0.08 L ≈ 50 m 0.04 0 <w> = 0.5 m s -1 (c) <w> = 1.0 m s -1 0.12 <w> = 2.0 m s -1 0.08 0.04 0 0 5 10 15 20 25 r [ µ m]

  24. Sensitivity to other model parameters (a) λ = 50 m 0.12 λ = 100 m λ = 200 m 0.08 0.04 0 PDF( r > r c ) [ µ m -1 ] (b) σ = 0.05 0.12 σ = 0.10 σ = 0.20 0.08 0.04 0 (c) RH = 0.50 0.12 RH = 0.65 RH = 0.80 0.08 0.04 0 0 5 10 15 20 25 r [ µ m]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend