draft
play

Draft EE 8235: Lecture 21 1 Lecture 21: Input-output analysis in - PowerPoint PPT Presentation

Draft EE 8235: Lecture 21 1 Lecture 21: Input-output analysis in fluid mechanics Linear analyses: Input-output vs. Stability AMPLIFICATION : STABILITY : v = T d t = A singular values of T e-values of A typical structures typical


  1. Draft EE 8235: Lecture 21 1 Lecture 21: Input-output analysis in fluid mechanics • Linear analyses: Input-output vs. Stability AMPLIFICATION : STABILITY : v = T d ψ t = A ψ singular values of T e-values of A typical structures typical structures cross-sectional dynamics 2D models

  2. Draft EE 8235: Lecture 21 2 Transition in Newtonian fluids • L INEAR HYDRODYNAMIC STABILITY : unstable normal modes ⋆ successful in: Benard Convection, Taylor-Couette flow, etc. ⋆ fails in: wall-bounded shear flows (channels, pipes, boundary layers) • D IFFICULTY #1 Inability to predict: Reynolds number for the onset of turbulence ( Re c ) � much before instability Experimental onset of turbulence: no sharp value for Re c • D IFFICULTY #2 Inability to predict: flow structures observed at transition (except in carefully controlled experiments)

  3. Draft EE 8235: Lecture 21 3 L INEAR STABILITY : • ⋆ For Re ≥ Re c ⇒ exp. growing normal modes � corresponding e-functions := exp. growing flow structures (TS-waves) ∞ ∞ z • ✂✂ ✍ ✲ x E XPERIMENTS : streaky boundary layers and turbulent spots • Flow z z ✻ ✻ ✲ ✲ x x Matsubara & Alfredsson, J. Fluid Mech. ’01

  4. Draft EE 8235: Lecture 21 4 • F AILURE OF LINEAR HYDRODYNAMIC STABILITY caused by high flow sensitivity ⋆ large transient responses ⋆ large noise amplification ⋆ small stability margins TO COUNTER THIS SENSITIVITY : must account for modeling imperfections T RANSITION ≈ S TABILITY + R ECEPTIVITY + R OBUSTNESS − − ← ← flow unmodeled disturbances dynamics

  5. Draft EE 8235: Lecture 21 5 Tools for quantifying sensitivity • I NPUT - OUTPUT ANALYSIS : spatio-temporal frequency responses  Free-stream turbulence  � Surface roughness Fluctuating d v  Acoustic waves velocity field ✲ Linearized Dynamics ✲     d 1 u amplification d 2 v − − − − − − − − − − − →     d 3 w � �� � � �� � v d IMPLICATIONS FOR : transition: insight into mechanisms control: control-oriented modeling

  6. Draft EE 8235: Lecture 21 6 Ensemble average energy density Re = 2000 • Dominance of streamwise elongated structures streamwise streaks!

  7. Draft EE 8235: Lecture 21 7 Influence of Re : streamwise-constant model �   � � � d 1 � � � � A os 0 ψ 1 t ψ 1 0 B 2 B 3 = + d 2   ψ 2 t ψ 2 B 1 0 0 Re A cp A sq d 3     u 0 C u � � ψ 1  = v C v 0    ψ 2 w C w 0 d 1 ✲ B 1 coupling Squire Orr-Sommerfeld ψ 1 ψ 2 d 2 u ❄ ✲ (j ωI − A os ) − 1 ✲ (j ωI − A sq ) − 1 ✲ ReA cp ✲ B 2 ✲ ♥ ✲ ♥ ✲ C u ✲ s ✻ d 3 v ✲ C v ✲ ✲ B 3 s w ✲ C w ✲ Jovanovi´ c & Bamieh, J. Fluid Mech. ’05

  8. Draft EE 8235: Lecture 21 8 Amplification mechanism in flows with high Re • H IGHEST AMPLIFICATION : ( d 2 , d 3 ) → u ‘glorified vortex viscous diffusion’ tilting dissipation ψ 1 ReA cp ψ 2 d 2 u ✲ (j ωI − ∆) − 1 ✲ (j ωI − ∆ − 1 ∆ 2 ) − 1 ✲ B 2 ✲ ♥ ✲ ✲ C u ✲ ✻ d 3 ✲ B 3 ☞ A MPLIFICATION MECHANISM : vortex tilting or lift-up wall-normal direction spanwise direction

  9. Draft EE 8235: Lecture 21 9 Turbulence without inertia N EWTONIAN : inertial turbulence V ISCOELASTIC : elastic turbulence Groisman & Steinberg, Nature ’00 N EWTONIAN : V ISCOELASTIC : ☞ F LOW RESISTANCE : increased 20 times!

  10. Draft EE 8235: Lecture 21 10 Turbulence: good for mixing . . . Groisman & Steinberg, Nature ’01

  11. EE 8235: Lecture 21 R ECTILINEAR FLOWS : no modal instabilities C URVILINEAR FLOWS : purely elastic instabilities P OLYMER MELT EMERGING FROM A CAPILLARY TUBE Draft . . . bad for processing Larson, Shaqfeh, Muller, J. Fluid Mech. ’90 Kalika & Denn, J. Rheol. ’87 11

  12. Draft EE 8235: Lecture 21 12 Oldroyd-B fluids H OOKEAN SPRING : ( Re/We ) v t = − Re ( v · ∇ ) v − ∇ p + β ∆ v + (1 − β ) ∇ · τ + d 0 = ∇ · v � � τ t = − τ + ∇ v + ( ∇ v ) T + We τ · ∇ v + ( ∇ v ) T · τ − ( v · ∇ ) τ β := solvent viscosity V ISCOSITY RATIO : total viscosity fluid relaxation time W EISSENBERG NUMBER : We := characteristic flow time Re := inertial forces R EYNOLDS NUMBER : viscous forces

  13. Draft EE 8235: Lecture 21 13 Input-output analysis body forcing velocity fluctuations fluctuations ✲ Equations of motion t ✲ ✲ Constitutive equations ✛ t ✛ polymer stress fluctuations     d 1 u amplification d 2 v − − − − − − − − − − − →     d 3 w � �� � � �� � v d • I NSIGHT INTO AMPLIFICATION MECHANISMS importance of streamwise elongated structures Hoda, Jovanovi´ c, Kumar, J. Fluid Mech. ’08, ’09 Jovanovi´ c & Kumar, JNNFM ’11

  14. Draft EE 8235: Lecture 21 14 Inertialess channel flow: worst case amplification • No single constitutive equation can describe the range of phenomena ⋆ important to quantify influence of modeling imperfections on dynamics ω σ 2 G ( k x , k z ) = sup max ( T ( k x , k z , ω )) : We = 10 , β = 0 . 5 , Re = 0

  15. Draft EE 8235: Lecture 21 15 G ( k x , k z ) : We = 50 , β = 0 . 5 , Re = 0

  16. Draft EE 8235: Lecture 21 16 G ( k x , k z ) : We = 100 , β = 0 . 5 , Re = 0 • Dominance of streamwise elongated structures streamwise streaks!

  17. Draft EE 8235: Lecture 21 17 Amplification mechanism • Highest amplification: ( d 2 , d 3 ) → u I NERTIALESS VISCOELASTIC : ‘glorified polymer viscous diffusion’ stretching dissipation normal/spanwise streamwise forcing velocity − 1 ✲ − (1 − β ) j ωβ + 1 A − 1 j ωβ + 1 ∆ − 1 ✲ We A cp2 ✲ ✲ ✲ os I NERTIAL N EWTONIAN : ‘glorified vortex viscous diffusion’ tilting dissipation normal/spanwise streamwise forcing velocity ✲ ReA cp1 (j ωI − A os ) − 1 (j ωI − ∆) − 1 ✲ ✲ ✲ ✲

  18. Draft EE 8235: Lecture 21 18 Inertialess lift-up mechanism ∆ η t = − (1 /β )∆ η + We (1 − 1 /β ) A cp2 ϑ � � ∂ yz ( U ′ ( y ) τ 22 ) + ∂ zz ( U ′ ( y ) τ 23 ) = − (1 /β )∆ η + We (1 − 1 /β )

  19. Draft EE 8235: Lecture 21 19 Spatial frequency responses amplification ( d 2 , d 3 ) → u − − − − − − − − − − − G ( k z ; Re ) = Re 2 f ( k z ) I NERTIAL N EWTONIAN : G ( k z ; We, β ) = We 2 g ( k z ) (1 − β ) 2 I NERTIALESS VISCOELASTIC : vortex tilting: f ( k z ) polymer stretching: g ( k z )

  20. Draft EE 8235: Lecture 21 20 Dominant flow patterns • F REQUENCY RESPONSE PEAKS ☞ streamwise vortices and streaks Inertial Newtonian: Inertialess viscoelastic: � color plots: streamwise velocity • C HANNEL CROSS - SECTION VIEW : contour lines: stream-function

  21. Draft EE 8235: Lecture 21 21 Flow sensitivity vs. nonlinearity • Challenge: relative roles of flow sensitivity and nonlinearity • Newtonian fluids: self-sustaining process for transition to turbulence Waleffe, Phys. Fluids ’97 Streaks O(1) advection of instability of mean shear U(y,z) Streamwise Streak wave Rolls mode (3D) O(1/R) O(1/R) nonlinear self−interaction

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend