draft
play

Draft EE 8235: Lecture 9 1 Lecture 9: Spectral theory for compact - PowerPoint PPT Presentation

Draft EE 8235: Lecture 9 1 Lecture 9: Spectral theory for compact normal operators Resolvent and spectrum of an operator Compact operators Direct extension of matrices Normal operators Commute with its adjoint Compact


  1. Draft EE 8235: Lecture 9 1 Lecture 9: Spectral theory for compact normal operators • Resolvent and spectrum of an operator • Compact operators ⋆ Direct extension of matrices • Normal operators ⋆ Commute with its adjoint • Compact normal operators ⋆ Unitarily diagonalizable ⋆ E-functions provide a complete orthonormal basis of H • Riesz-spectral operators

  2. Draft EE 8235: Lecture 9 2 Resolvent • Want to study equations of the form ( λI − A ) ψ = u, {A : H ⊃ D ( A ) − → H ; λ ∈ C ; ψ, u ∈ H } Determine conditions under which A λ = ( λI − A ) is boundedly invertible R λ = ( λI − A ) − 1 exists  (1)      R λ = ( λI − A ) − 1 is bounded Relevant conditions: (2)   The domain of R λ = ( λI − A ) − 1 is dense in H   (3)  • The resolvent set of A : ρ ( A ) := { λ ∈ C ; (1), (2), (3) hold } • The spectrum of A : σ ( A ) := C \ ρ ( A )

  3. Draft EE 8235: Lecture 9 3 Spectrum R λ = ( λI − A ) − 1 exists (1) R λ = ( λI − A ) − 1 is bounded (2) The domain of R λ = ( λI − A ) − 1 is dense in H (3) • σ ( A ) can be decomposed into σ ( A ) = σ p ( A ) ∪ σ c ( A ) ∪ σ r ( A ) ⋆ Point spectrum σ p ( A ) := { λ ∈ C ; ( λI − A ) is not one-to-one } ⋆ Continuous spectrum σ c ( A ) := { λ ∈ C ; (1) and (3) hold, but (2) doesn’t } ⋆ Residual spectrum σ r ( A ) := { λ ∈ C ; (1) holds but (3) doesn’t }

  4. Draft EE 8235: Lecture 9 4 Examples • Point spectrum { λ ∈ σ p ( A ): e-values ; v ∈ N ( λI − A ): e-functions } • Continuous spectrum multiplication operator on L 2 [ a, b ]: [ M a f ( · )] ( x ) = a ( x ) f ( x ) • Residual spectrum right-shift operator on ℓ 2 ( N ): [ S r f ( · )] ( n ) = f n − 1

  5. Draft EE 8235: Lecture 9 5 Spectral decomposition of compact normal operators • compact, normal operator A on H admits a dyadic decomposition ∞ � [ A v n ] ( x ) = λ n v n ( x ) � ⇒ [ A f ] ( x ) = λ n v n ( x ) � v n , f � for all f ∈ H � v n , v m � = δ nm n = 1 → H , with compact and normal A − 1 A : H ⊃ D ( A ) −   � A − 1 v n ∞ ( x ) = λ − 1 � � � n v n ( x ) � λ − 1 A − 1 f � � ⇒ n v n ( x ) � v n , f � , f ∈ H ( x ) = � v n , v m � = δ nm n = 1 ∞ � [ A f ] ( x ) = λ n v n ( x ) � v n , f � , f ∈ D ( A ) n = 1 ∞ � � | λ n | 2 |� v n , f �| 2 < ∞ � D ( A ) = f ∈ H ; n = 1

  6. Draft EE 8235: Lecture 9 6 • compact, normal operator A on H  u = u R ( A ) + u N ( A ) �  [ A v n ] ( x ) = λ n v n ( x ) , λ n � = 0   ∞ � = v n � v n , u � + u N ( A ) � v n , v m � = δ nm    n = 1 • Solutions to ( λI − A ) ψ = u, λ � = 0 1. λ − not an eigenvalue of A ⇒ unique solution ∞ � v n , u � v n + 1 � ψ = λ u N ( A ) λ − λ n n = 1 � λ − eigenvalue of A ⇒ there is a solution iff � v j , u � = 0 for all j ∈ J 2. J − index set s.t. λ j = λ � v j , u � v j + 1 � � ψ = c j v j + λ u N ( A ) λ − λ j j ∈ J j ∈ N \ J

  7. Draft EE 8235: Lecture 9 7 Singular Value Decomposition of compact operators • compact operator A : H 1 − → H 2 admits a Schmidt Decomposition (i.e., an SVD) ∞ � [ A f ] ( x ) = σ n u n ( x ) � v n , f � n = 1 A A † u n σ 2 � � ⇒ { u n } n ∈ N orthonormal basis of H 2 ( x ) = n u n ( x ) A † A v n σ 2 � � ( x ) = n v n ( x ) ⇒ { v n } n ∈ N orthonormal basis of H 1 • matrix M : C n − → C m r r M = U Σ V ∗ = � σ i u i v ∗ � ⇒ σ i u i � v i , f � M f = i i = 1 i = 1 M M ∗ u i σ 2 = i u i M ∗ M v i σ 2 = i v i

  8. Draft EE 8235: Lecture 9 8 Riesz basis • { v n } n ∈ N : Riesz basis of H if ⋆ span { v n } n ∈ N = H ⋆ there are m, M > 0 such that for any N ∈ N and any { α n } , n = 1 , . . . , N N N N | α n | 2 ≤ � α n v n � 2 ≤ M � � � | α n | 2 m n = 1 n = 1 n = 1

  9. Draft EE 8235: Lecture 9 9 • closed A : H ⊃ D ( A ) − → H � { λ n } n ∈ N simple e-values [ A v n ] ( x ) = λ n v n ( x ) { v n } n ∈ N Riesz basis of H A † w n ( x ) = ¯ � � λ n w n ( x ) ⇒ { w n } n ∈ N can be scaled s.t. � w n , v m � = δ nm ⋆ ⋆ every f ∈ H can be represented uniquely by ∞ � v n ( x ) � w n , f � f ( x ) = n = 1 ∞ ∞ | � w n , f � | 2 ≤ � f � 2 ≤ M � � | � w n , f � | 2 m n = 1 n = 1 or by ∞ � w n ( x ) � v n , f � f ( x ) = n = 1 ∞ ∞ 1 1 | � v n , f � | 2 ≤ � f � 2 ≤ � � | � v n , f � | 2 M m n = 1 n = 1

  10. Draft EE 8235: Lecture 9 10 Riesz-spectral operator • closed A : H ⊃ D ( A ) − → H is Riesz-spectral operator if  { λ n } n ∈ N simple e-values     { v n } n ∈ N [ A v n ] ( x ) = λ n v n ( x ) Riesz basis of H   { λ n } n ∈ N  totally disconnected  A − Riesz-spectral operator with e-pair { ( λ n , v n ) } n ∈ N e-functions of A † s.t. � w n , v m � = δ nm { w n } n ∈ N −   �  σ ( A ) = { λ n } n ∈ N , ρ ( A ) = { λ n ∈ C ; inf n ∈ N | λ − λ n | > 0 }      ∞  1  ( λI − A ) − 1 f � �  � λ ∈ ρ ( A ) ⇒ v n ( x ) � w n , f �  ( x ) = λ − λ n n = 1   ∞ ∞ � �  | λ n | 2 |� w n , f �| 2 < ∞  � �  [ A f ] ( x ) = λ n v n ( x ) � w n , f � , D ( A ) = f ∈ H ;     n = 1 n = 1

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend