draft
play

Draft EE 8235: Lectures 17 & 18 1 Lectures 17 & 18: - PowerPoint PPT Presentation

Draft EE 8235: Lectures 17 & 18 1 Lectures 17 & 18: Numerical methods Spectral (Galerkin) method Basis function expansion Compute inner products to determine equation for spectral coefficients Pseudo-spectral method


  1. Draft EE 8235: Lectures 17 & 18 1 Lectures 17 & 18: Numerical methods • Spectral (Galerkin) method ⋆ Basis function expansion ⋆ Compute inner products to determine equation for spectral coefficients • Pseudo-spectral method ⋆ Satisfy equation at the set of ”collocation” points ⋆ Connection to polynomial interpolation • Chebyshev polynomials ⋆ Why they should be used ⋆ Basic properties

  2. Draft EE 8235: Lectures 17 & 18 2 Online resources • Freely available books/papers ⋆ Jonh P . Boyd Chebyshev and Fourier Spectral Methods ⋆ Lloyd N. Trefethen Finite Difference and Spectral Methods for Ordinary and Partial Differential Equations ⋆ Weideman and Reddy A Matlab Differentiation Matrix Suite • Publicly available software ⋆ A Matlab Differentiation Matrix Suite http://dip.sun.ac.za/ ∼ weideman/research/differ.html ⋆ Chebfun http://www2.maths.ox.ac.uk/chebfun/

  3. Draft EE 8235: Lectures 17 & 18 3 Diffusion equation on L 2 [ − 1 , 1] ψ t ( x, t ) = ψ xx ( x, t ) ψ ( x, 0) = ψ 0 ( x ) ψ ( ± 1 , t ) = 0 Basis function expansion ∞ � ψ ( x, t ) = α n ( t ) φ n ( x ) n = 1 α n ( t ) − (unknown) spectral coefficients φ n ( x ) − (known) basis functions

  4. Draft EE 8235: Lectures 17 & 18 4 Galerkin method • Approximate solution by   α 1 ( t ) N � φ 1 ( x ) � . φ N ( x ) �   . ψ ( x, t ) ≈ α n ( t ) φ n ( x ) = · · · .   n = 1 α N ( t ) substitute into the equation and take an inner product with { φ m }         � φ 1 , φ ′′ � φ 1 , φ ′′ � φ 1 , φ 1 � · · · � φ 1 , φ N � α 1 ( t ) ˙ 1 � · · · N � α 1 ( t ) . . . . . .         . . . . . .  = . . . . . .        � φ N , φ ′′ � φ N , φ ′′ � φ N , φ 1 � · · · � φ N , φ N � α N ( t ) ˙ 1 � · · · N � α N ( t ) • Done if basis functions satisfy BCs Otherwise, need additional conditions on spectral coefficients   α 1 ( t ) � � � � 0 φ 1 ( − 1) · · · φ N ( − 1) .   . = .   0 φ 1 (+1) · · · φ N (+1) α N ( t )

  5. Draft EE 8235: Lectures 17 & 18 5 Pros and cons • Advantage: superior convergence (if basis functions selected properly) • Problem: requires integration ⋆ Cumbersome in spatially-varying and nonlinear systems Example: Orr-Sommerfeld equation in fluid mechanics � � j k x ( U ′′ ( y ) − U ( y ) ∆) + 1 R ∆ 2 ∆ ψ t = ψ

  6. Draft EE 8235: Lectures 17 & 18 6 Polynomial interpolation • Approximate f ( x ) by a polynomial that matches f ( x ) at interpolation points p N − 1 ( x i ) = f ( x i ) , i = { 1 , . . . , N } • Examples: N = 2 ⇒ Linear Interpolation N = 3 ⇒ Quadratic Interpolation x 2 x 0 x 1 x 1 x 0 ( x − x 1 )( x − x 2 ) f ( x ) ≈ ( x 0 − x 1 )( x 0 − x 2 ) f ( x 0 ) + f ( x ) ≈ x − x 1 f ( x 0 ) + x − x 0 ( x − x 0 )( x − x 2 ) f ( x 1 ) ( x 1 − x 0 )( x 1 − x 2 ) f ( x 1 ) + x 0 − x 1 x 1 − x 0 ( x − x 0 )( x − x 1 ) ( x 2 − x 0 )( x 2 − x 1 ) f ( x 2 )

  7. Draft EE 8235: Lectures 17 & 18 7 Lagrange interpolation formula N � p N ( x ) = f ( x i ) C i ( x ) i = 0 N x − x j � C i ( x ) = x i − x j j = 0 , j � = i • Cardinal functions C i ( x j ) = δ ij ⋆ Not efficient for computations ⋆ Suitable for theoretical arguments • Runge Phenomenon 1 f ( x ) = 1 + x 2 , x ∈ [ − 5 , 5] ⋆ Evenly spaced points ⇒ convergence for | x | ≤ 3 . 63 Interactive Demo

  8. Draft EE 8235: Lectures 17 & 18 8 Choice of grid points • Cauchy interpolation error theorem � − has N + 1 derivatives N f ⇒ f ( x ) − p N ( x ) = f ( N +1) ( ξ ) � ( x − x i ) ( N + 1)! p N − interpolant of degree N i = 0 • Chebyshev minimal amplitude theorem ⋆ Among all polynomials q N ( x ) of degree N , with leading coefficient 1 , T N ( x ) = N th Chebyshev polynomial 2 N − 1 2 N − 1 has the smallest L ∞ [ − 1 , 1] norm � � T N ( x ) 1 � � sup | q N ( x ) | ≥ sup � = for all q N ( x ) 2 N − 1 , � � 2 N − 1 � x ∈ [ − 1 , 1] x ∈ [ − 1 , 1]

  9. Draft EE 8235: Lectures 17 & 18 9 Optimal interpolation points • Select polynomial part of f ( x ) − p N ( x ) as N ( x − x i ) = T N +1 ( x ) � 2 N i = 0 • Optimal interpolation points: roots of T N +1 ( x ) � (2 i − 1) π � x i = cos , i = { 1 , . . . , N + 1 } 2 ( N + 1)

  10. Draft EE 8235: Lectures 17 & 18 10 Chebyshev polynomials • Solutions to Sturm-Liouville Problem � 1 − x 2 � n ( x ) + n 2 T n ( x ) = 0 , x ∈ [ − 1 , 1] , n = 0 , 1 , . . . T ′′ n ( x ) − x T ′ • Three-term recurrence { T 0 = 1; T 1 ( x ) = x ; T n +1 ( x ) = 2 x T n ( x ) − T n − 1 ( x ) , n ≥ 1 } • Alternative definition T n (cos ( t )) = cos ( n t ) ⇒ | T n ( x ) | ≤ 1 , for all x ∈ [ − 1 , 1] , n = 0 , 1 , . . .

  11. Draft EE 8235: Lectures 17 & 18 11 • Inner product  0 m � = n   � 1   T m ( x ) T n ( x ) m = n = 0 π √ � T m , T n � w = d x = 1 − x 2  − 1 π   m = n � = 0  2 • Collocation points � (2 i − 1) π � Gauss-Chebyshev: x i = cos i = { 1 , . . . , N } , 2 N � � π i Gauss-Lobatto: x i = cos i = { 0 , . . . , N − 1 } , N − 1 • Integration � x T n +1 ( x ) T n − 1 ( x ) T n ( ξ ) d ξ = 2 ( n + 1) + 2 ( n − 1) , n ≥ 2 − 1

  12. Draft EE 8235: Lectures 17 & 18 12 Gaussian integration • Approximate f ( x ) by a polynomial that matches f ( x ) at interpolation points p N ( x i ) = f ( x i ) , i = { 0 , . . . , N } N � f ( x ) ≈ p N ( x ) = f ( x i ) C i ( x ) i = 0 • Evaluate integral of f ( x ) by integrating p N ( x ) � b N � f ( x ) d x ≈ w i f ( x i ) a i = 0 Quadrature weights: � b w i = C i ( x ) d x a • Gaussian integration: exact if integrand is a polynomial of degree N

  13. Draft EE 8235: Lectures 17 & 18 13 • Can be made exact for polynomials of degree 2 N + 1 by optimal selection of ⋆ interpolation points { x i } ⋆ weights { w i } • Gauss-Jacobi integration ⋆ orthogonal polynomials w.r.t. the inner product with weight function ρ ( x ) ⋆ interpolation points: zeros of p N +1 ( x ) ⋆ quadrature formula: exact for polynomials of degree 2 N + 1 or smaller � b N � f ( x ) ρ ( x ) d x = w i f ( x i ) a i = 0 • Good candidates for quadrature points: � π i � Gauss-Lobatto: x i = cos i = { 0 , . . . , N } , N

  14. Draft EE 8235: Lectures 17 & 18 14 Interpolation by quadrature • Orthogonality w.r.t. discrete inner product N � � φ i , φ j � = δ ij ⇒ � φ i , φ j � G = w m φ i ( x m ) φ j ( x m ) = δ ij m = 0 • Basis function expansion ∞ N � � f ( x ) = α n φ n ( x ) = α n φ n ( x ) + E N ( x ) n = 0 n = 0 • Discrete vs. exact spectral coefficients = � φ m , f � G α m,G � � N � = α n φ n + E N φ m , n = 0 G N � = α n � φ m , φ n � G + � φ m , E N � G n = 0 = α m + � φ m , E N � G

  15. Draft EE 8235: Lectures 17 & 18 15 Error bound for Chebyshev interpolation • Error between Galerkin and Pseudo-spectral twice the sum of absolute values of neglected spectral coefficients ∞ � ⋆ f ( x ) = α n T n ( x ) n = 0 ⋆ p N ( x ) – polynomial that interpolates f ( x ) at Gauss-Lobatto points ∞ � | f ( x ) − p N ( x ) | ≤ 2 | α n | , for all N and all x ∈ [ − 1 , 1] n = N +1

  16. Draft EE 8235: Lectures 17 & 18 16 Back to cardinal functions • Lagrange interpolation N � p N ( x ) = f ( x i ) C i ( x ) i = 0 N x − x j � C i ( x ) = x i − x j j = 0 , j � = i Cardinal functions C i ( x j ) = δ ij • Sinc functions � ( x − kh ) π � sin � x − kh � h C k ( x ; h ) = = sinc ( x − kh ) π h h { x j = j h ; j ∈ Z } ⇒ C k ( x j ; h ) = δ jk Approximate f by ∞ � f ( x ) = f ( x j ) C j ( x ; h ) j = −∞

  17. Draft EE 8235: Lectures 17 & 18 17 Cardinal functions for Chebyshev polynomials • Gauss-Chebyshev points: zeros of T N +1 ( x ) ⋆ Taylor series expansion around x j N +1 ( x j ) ( x − x j ) + 1 N +1 ( x j ) ( x − x j ) 2 + O � | x − x j | 3 � + T ′ 2 T ′′ T N +1 ( x ) = T N +1 ( x j ) ) � �� � 0 Cardinal functions N +1 ( x j ) ( x − x j ) = 1 + T ′′ N +1 ( x j ) ( x − x j ) T N +1 ( x ) � | x − x j | 2 � C j ( x ) = + O ) T ′ 2 T ′ N +1 ( x j ) • Gauss-Lobatto points: zeros of (1 − x 2 ) T ′ N ( x ) � 1 − x 2 � T ′ N ( x ) C j ( x ) = Cardinal functions: N ( x )) ′ � ((1 − x 2 ) T ′ x = x j ( x − x j ) �

  18. Draft EE 8235: Lectures 17 & 18 18 Matlab Differentiation Matrix Suite: A Demo %% number of grid points without boundaries (no \pm 1) N = 50 %% 1st & 2nd order differentiation matrices [yT,DM] = chebdif(N+2,2); y = yT(2:end-1); %% 1st & 2nd derivatives wrt y on a total grid (no BCs) DT1 = DM(:,:,1); DT2 = DM(:,:,2); %% implement homogeneous Dirichlet BCs %% ammounts to deleting 1st rows and columns of DT1 & DT2 D1 = DT1(2:N+1,2:N+1); D2 = DT2(2:N+1,2:N+1); %% 4th derivative with Dirichlet & Neumann BCs at both ends %% D4 - obtained on a grid without \pm 1 [y1,D4] = cheb4c(N+2); %% e-value decomposition of D2 with Dirichlet BCs [Vh,Dh] = eig(D2); % compare with analytical results

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend