dlas escape fraction rt
play

DLAs, Escape Fraction, & RT Ken Nagamine UNLV Collaborators: - PowerPoint PPT Presentation

DLAs, Escape Fraction, & RT Ken Nagamine UNLV Collaborators: Hidenobu Yajima (Penn State) Jun-Hwan Choi (Kentucky) Robert Thompson, Jason Jaacks (UNLV) KN, Choi, Yajima, 2010, ApJ, 725, L219 Yajima, Choi, KN, 2011, MN, 412,


  1. DLAs, Escape Fraction, & RT Ken Nagamine UNLV Collaborators: Hidenobu Yajima (Penn State) Jun-Hwan Choi (Kentucky) Robert Thompson, Jason Jaacks (UNLV) KN, Choi, Yajima, 2010, ApJ, 725, L219 Yajima, Choi, KN, 2011, MN, 412, 411 Yajima, Choi, KN, 2012, MN, in press Thompson, KN+ ’12, in prep.

  2. Outline • Introduction • DLAs, Column Density Distribution: f(N HI ) • What physical processes shape f(N HI )? -- effects of radiation (stellar, UVB) & feedback • How big are DLAs? -- Cross section σ DLA (M h ) • Escape Fraction of ionizing photons • Conclusions

  3. What are DLAs? ☀ quasar N HI > 2 × 10 20 cm − 2 (Wolfe+ ‘86) Direct probe of H I gas in high-z universe DLAs are heavy-weight champions of H I absorbers Need to understand these systems in the context of CDM model

  4. Razoumov+ ’06 Gallery of DLAs Pontzen+ ’08 proper 200 kpc − − − N HI − − − KN+ ‘04a,b − − − − − − proper 200 kpc − atomic hydrogen density baryon overdensity − − 20 20 − 2 − 30 30 − 3 40 − 40 y (kpc) − 4 50 50 − − 60 60 − DLA − 5 − 70 70 − 6 − 80 80 Hong+ ’10 − 7 40 50 60 70 80 90 100 110 40 50 60 70 80 90 100 110 stellar surface density Cen ’10 20 Yajima+ ’12 22.0 30 − − − 0.5 40 21.2 − − − 50 − 1 60 log N HI,STAR (cm − 2 ) 20.3 − − 1.5 70 − 19.5 80 − 2 − − 40 50 60 70 80 90 100 110 x (kpc) − 18.7 − − 17.8 Fumagalli+ ’11 17.0 10 kpc Tescari+’09

  5. N HI M Z M ★ ~100kpc phys z=3 Metallicity SFR DLAs UVB local stellar radiation KN04a,b

  6. Column density distribution f(N HI ) • No-feedback run overpredicts at high N HI. z=3 • Strong feedback suppresses the high N HI -end. (SH03 SF model) • But under -estimate at N HI <~21 dex • Assumed optically-thin UVB KN+ ‘04a,b

  7. Effect of UVB on f(N HI ) OTUV no-UVB • No-UVB run overpredicts . • UVB sinks in too much w/ opt-thin approx. opt-thin • Shutting off UVB at ρ >0.01 ρ th,SF yields good result. (opt-thin) ρ th UV ~10 -3 -10 -2 cm -3 (cf. Tajiri & Umemura ’98; Kollmeier+ ’09) KN+ ’10

  8. Effects of UVB and Self-Shielding Opt-thin approx. OTUV model Important for DLA gas! Neutral fraction n uv n uv n sf n sf n sf ~ 0.6 cm -3 n uv ~ 6e-3 cm -3 emperature T Gas density Gas density KN+ ’10

  9. ART method Authentic Ray Tracing Method (Nakamoto et al. 2001, Iliev et al. 2006) !" adiation meshes are arranged radially from each sources independently of fluid meshes. !# he radiation field on fluid meshes are estimated by interpolating from near radiation meshes. !# he order of calculation amount N source " N # " N $ " N path Long characteristic method: N source " N x " N y " N z " N path dI Basic equation: I ! = $ # + " abs ! ! ds (from Yajima, ’09)

  10. Validating OTUV model w/ RT calculation Yajima, Choi, KN ’12 n uv ~ 6e-3 cm -3 OTUV: Neutral fraction M tot =2e12 M ⦿ gas density gas density star = ˙ N ph � 0 exp( − � ) / 4 �� 2 Γ γ green: UVB RT magenta: UVB RT + collis. ioniz. � = � 0 n HI � red: UVB RT + collis. ioniz. + stellar RT

  11. Validating OTUV model w/ RT calculation Yajima, Choi, KN ’12 Faucher-Giguere+ ’10 n uv ~ 6e-3 cm -3 OTUV: Neutral fraction M tot =2e12 M ⦿ Altay+ ’11 gas density green: UVB RT magenta: UVB RT + collis. ioniz. red: UVB RT + collis. ioniz. + stellar RT Rahmati+ ’12

  12. Effects of Local Stellar Radiation on DLAs open circle -- before RT (OTUV) red & magenta points -- after stellar RT slight reduction KN+ ’10 in σ by stellar RT f(N HI ) is not so much Yajima+ ’12 affected by stellar rad RT

  13. Effects of Radiation on N HI no RT UVB RT + coll. ioniz. UVB+coll. ioniz.+star RT Halo A M h =7e11 M ⦿ L=300 kpc Halo B M h =3e10 M ⦿ L=80 kpc Yajima+ ’12

  14. UVB+coll. ioniz.+star RT Opt-thin approx. Halo A M h =7e11 M ⦿ L=300 kpc M h =1e11 M ⦿ L=159 kpc

  15. Halo Halo Halo Halo Stellar mass N HI Metallicity (Circles: physical R vir = 68, 37, 23, 11 kpc) Yajima, Choi, KN ’12

  16. DLA Cross Section vs. Halo Mass T escari+ ’09; GADGET SPH Fumagali+ ’11; ART AMR Pontzen+ ’08; GASOLINE SPH Cen ’10; Enzo AMR Yajima, Choi, KN ’12

  17. Altay+ ’11 Effect of H 2 on f(N H ) Thompson, KN+ ’12 Rahmati+ ’12 Erkal+ ’12 F . 11.— E ect on column density distribution of removing Cosmology ( Ω b , σ 8 ), SF, FB, UVB, H2, ….

  18. Escape Fraction

  19. Authentic Ray Tracing method Yajima, Choi, KN ’11 (Nakamoto+ ’01, Illiev+ ’06, Yajima+ ’09) Halo A M tot ∼ 7 × 10 11 M � f esc ~ few % 216 kpc Halo B Choi & KN ’09 cosmo SPH sims Log X HI 48 kpc -6 -4 -2 0 f esc ~ few 10s% M tot ∼ 1 × 10 10 M �

  20. f esc as a function of M halo & redshift • Choi & KN ’09 cosmo SPH sims w/ MVV wind feedback models • Decreasing f esc as a func of M halo --- roughly consistent with Razoumov+’09; but different from Gnedin +’09, Wise & Cen ’09 Yajima, Choi, KN ’11

  21. Escape Fraction of Ionizing Photons Method f esc,ion (M halo ) Authors Very low AMR, 6Mpc box, 65pc 10 -5 -10 -1 , Gnedin+ ’09 res, OTVET, z=3 10 11 -10 12 M ⦿ SPH, 6Mpc box, 1.0-0.0, Razoumov+’09 ~0.5kpc res, resim 9 7 M O (1) M vir = 1.57 x 10 gals, z=4-10 10 8 -10 11 M ⦿ • -1 ] -1 • yr -4 10 SFR [M O Large scatter & time evol. AMR, 2 & 8Mpc box, Wise & Cen +’09 0-0.4, -5 10 0 10 0.1pc res, z=8 -1 10 f esc 10 6 -10 9 M ⦿ -2 10 -3 10 Eulerian (Mori & 0 20 40 60 80 100 Time [Myr] 0-0.5, Yajima+ ’09 8 Umemura ’06 sim, single with time system, t=0-1Gyr) SPH, 10Mpc box, Yajima, Choi, KN ’11 1.0-0.0 ~0.5kpc res, z=3-6 10 9 -10 12 M ⦿ 100s of gals. no delay delay 0.5 M yr delay 1.0 M yr delay 5.0 M yr Paardekooper+ ’11 Fig. 13. The star formation rate and escape fraction as function

  22. Reionization of the Universe • Simulations suggest that the Universe can be reionized by the star-forming galaxies at z=6 if C ≤ 10. • High f esc for low-mass gals helps. • Dashed line: possible quasar contribution • Dotted line: Bolton & Blue points: intrinsic emission rate density Haehnelt ’07 Red points: escaped photons Yajima, Choi, KN ’11

  23. Reionization of the Universe • Starforming gals can reionize the Universe by z=6. • Showing contribution from diff. gal. mass ranges • yellow & cyan shade: results from Munoz & Loeb ’11 • dotted line: required SFRD based on Madau ’99: � C � 3 � � 1 + z ρ � ≈ 2 × 10 − 3 ˙ f esc 10 <fesc>=0.42 from RT result of Yajima+ ’11 Jaacks, Choi, KN ’12

  24. Impact of H 2 -based SF model Implementation of Krumholz+ ’08, ’09 Thompson, KN+ ’12 H 2 models into cosmo sims

  25. Conclusions • Shape of f(N HI ) : not fully understood yet -- Very rich subject • DLA cross section: σ DLA ≈ 10 3 kpc 2 for M h =10 12 M ⦿ --- but slope and shape of σ (M h ); more study needed. • Opt-thin approx is no good; the OTUV model is a good approx. to the RT result. (KN+ ’10; Yajima+ ’12) • f esc : wide variety; not understood. Scatter and time variation • Future work: Improve SF and feedback (SN/AGN); H 2 effect; Metallicity & radiation dependence (metal diffusion; turbulence…)

  26. End

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend