dispersion relations for 2 and 2
play

Dispersion relations for 2 and 2 Bachir Moussallam work with: - PowerPoint PPT Presentation

GDR Light and Shadow ***Montpellier, Nov. 16-17 2016 Dispersion relations for 2 and 2 Bachir Moussallam work with: R. Garc a-Mart n Introduction hadrons at e + e colliders: 4 ln 4 E ln E


  1. GDR Light and Shadow ***Montpellier, Nov. 16-17 2016 Dispersion relations for γγ → 2 π and γγ ∗ → 2 π Bachir Moussallam work with: R. Garc´ ıa-Mart´ ın

  2. Introduction γγ → hadrons at e + e − colliders: σ ∼ α 4 ln 4 E ln E m e m π [ Brodsky, Kinoshita, Terazawa (1970) ] 2 γ couplings of hadrons ( J PC = 0 ++ , 0 −+ , 2 ++ , 2 −+ , 3 ++ , · · · ) π 0 , η → 2 γ : measurement via Primakov [ Browman (1974) ] was not correct ! σ , f 0 ( 980 ) , a 0 ( 980 ) → 2 γ Analyticity based extraction: [ Mennessier, Z.Phys. C16 (1983) 241 ] 2/40

  3. LBL hadronic contributions to muon g − 2 Largest contribution: one-pion pole Large N c approach, next largest: η , σ , f 0 , · · · poles More general Bern dispersive approach: � [ γγ ∗ → ππ ] J × [ γ ∗ γ ∗ → ππ ] J Ingredients: J 3/40

  4. γγ → ππ : analyticity 4/40

  5. Independent amplitudes Amplitude γ ( ∗ ) ( q 1 ) γ ( ∗ ) ( q 2 ) → π ( p 1 ) π ( p 2 ) derived from the matrix element � e 2 W µν ( q i , p i ) = i d 4 xe − iq 1 x � π ( p 1 ) π ( p 2 ) | T ( j µ ( x ) j ν ( 0 )) | 0 � Ward identities: q µ 1 W µν = q ν 2 W µν = 0. Expand on basis T n µν ( q i , p i ) , n = 1 · · · 5 W µν = A ( s , t , q 2 i ) T 1 µν + B ( s , t , q 2 i ) T 2 µν + C ( s , t , q 2 i ) T 3 µν + · · · Helicity amplitudes: H ++ ( s , θ ) , H +− ( s , θ ) , H + 0 ( s , θ ) 5/40

  6. Analyticity of scattering amplitudes Starting point: Mandelstam analyticity conjecture [ PR 112 (1958) 1344 ] � � ρ st ( s ′ , t ′ ) ds ′ dt ′ A ( s , t , u ) = ( s ′ − s )( t ′ − t ) + D st � � � � ρ su ( t ′ , u ′ ) ρ su ( u ′ , s ′ ) dt ′ du ′ du ′ ds ′ ( t ′ − t )( u ′ − u ) + ( u ′ − u )( s ′ − s ) D tu D us Partial-wave amplitudes s-plane are analytic functions of s 0 4 m 2 π γγ → ππ : h I J ( s ) = h I J , L ( s ) + h I J , R ( s ) 6/40

  7. Discontinuity across RHC (in elastic region 4 m 2 π � s � s in ) � � ∗ 1 t I 2 i disc [ h I J ( s )] = Im [ h I � �� � h I J ( s )] = σ π ( s ) J ( s ) J ( s ) ππ amplitude FSI theory [ Omn` es (1958) ] : � s � � ∞ ds ′ Ω I s ′ ( s ′ − s ) φ I J ( s ′ ) J ( s ) = exp π 4 m 2 π with: J ( s ′ ) , s ′ � s in (Fermi-Watson) φ I = δ I J ( s ′ ) J ( s ′ )] , s ′ > s in = Phase [ h I Application to 2 γ → 2 π : [ Gourdin,Martin Nuov.Com.17 (1960) 224 ] 7/40

  8. Omn` es function removes right-hand cut � h I � J ( s ) s > 4 m 2 Im = 0, π Ω I J ( s ) General representation: h I J ( s ) = h I J , L ( s ) � � � ∞ P n − 1 ( s ) + s n ds ′ h I J , L ( s ′ ) sin ( φ I J ( s ′ )) + Ω I J ( s ) ( s ′ ) n ( s ′ − s ) | Ω I π J ( s ′ ) | 4 m 2 π Exact, but needs HE information In practice: in finite energy region efficient approximation, few parameters, Fix (partly) from chiral constraints 8/40

  9. Phase φ I J in inelastic region ? ππ J = 0, I = 0 : main contrib. to inelasticity from KK Coupled channel extension: Ω I J is 2 × 2 matrix: must be computed numerically from ππ , KK 2 × 2 T-matrix Prediction for φ 0 0 = Phase [ h 0 0 ] 350 φ 0 0 δ 0 300 0 0 ], Phase-shift 250 200 150 Phase[ h 0 100 50 0 0.2 0.4 0.6 0.8 1 1.2 1.4 √ s GeV Phase [ h 0 0 ] displays sharp fall off 9/40

  10. Left-hand cut Leading contribution at small s: from pion pole in γπ + → γπ + , computed from sQED Lagrangian called Born term Soft photon theorem [ F. Low, PR 110(1958)974 ] h I J ( s ) → h I , Born ( s ) + O ( s ) J ⇒ P n − 1 ( 0 ) = 0. 10/40

  11. Beyond pion pole: two options 1) Start from Mandelstam based DR’s (e.g. family with ( t − a )( u − a ) = b ) [ Hoferichter et al. EPJ C71 (2011)1743 ] . Then, project on PW’s: − → h J , L ( s ) in terms of Im [ γπ → γπ ] J (but no detailed exp. inputs) 2) Less rigorous (large N c ): resonance contributions to γπ → γπ , from Lagrangian : ρ , ω , a 1 , b 1 , a 2 ... Extension to γ ∗ rather simple 11/40

  12. Chiral expansion results and constraints 12/40

  13. Historically: γγ → π 0 π 0 : [ Bijnens, Cornet NP B296 (1988) 557, Donoghue, Holstein,Lin PR D37 (1988)2423 ] . One-loop calc. in ChPT: finite, no LEC’s � � ++ ( s ) = m 2 1 + m 2 π − s s log 2 σ π ( s ) − 1 H n π 8 π 2 F 2 σ π ( s ) + 1 π Measured at DESY [ Crystal Ball, PR D41 (1990) 3324 ] γγ → π 0 π 0 20 ChPT p 4 18 Crystal Ball (1990) 16 σ ( | cos( θ ) | < 0 . 8) (nb) 14 12 10 8 6 4 2 Two-loop calc. [ Bellucci et 0 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 al.(1990) ] improves energy dep. √ s (GeV) 13/40

  14. Matching DR’s and ChPT Pion polarisabilities electric ( α i ) and magnetic ( β i ) e 2 π ) = s ( α 1 − β 1 ) + s 2 2 π m π H ++ ( s , t = m 2 12 ( α 2 − β 2 ) + · · · − e 2 π ) = s ( α 1 + β 1 ) + s 2 2 π m π H +− ( s , t = m 2 12 ( α 2 + β 2 ) + · · · Polarisabilities in ChPT [ Gasser, Ivanov, Sainio NP B728 (2005) 31,B745(2006)84 ] ( α − β ) [ 10 − 4 fm 3 ] p 4 , p 6 Couplings π 0 one-loop − 1.0 None two-loops −( 1.9 ± 0.2 ) c 29 , c 30 , c 31 , c 32 , c 33 , c 34 π + ¯ l 5 − ¯ one-loop 6.0 ± 0.6 l 6 two-loops 5.7 ± 1.0 · · · + c 6 , c 35 , c 44 , c 46 , c 47 , c 50 , c 51 Compass(2014): ( α − β ) π + = ( 4.0 ± 1.2 ± 1.4 ) · 10 − 4 fm 3 14/40

  15. Use four constraints from ChPT: 1) For π + : [ Gasser et al., NP B745 (2006)84 ] ( α 1 − β 1 ) = [ 4.7 − 5.7 ] 10 − 4 fm 3 2) For π 0 : relation between dipole and quadrupole polarisabilities in terms of one p 6 coupling π ( α 2 − β 2 ) π 0 =( 6.20 + 10 5 c r 6 ( α 1 − β 1 ) π 0 + m 2 34 ) 10 − 4 fm 3 c r 34 can be estimated from sum rule: ( τ decays inputs) 10 5 c r 34 = ( 1.18 ± 0.31 ) : [ D¨ urr,Kambor PR D61 (2000) ] 10 5 c r 34 = ( 1.37 ± 0.16 ) : [ Golterman et al.,PR D89 (2014) ] 3) For K + , K 0 : ChPT p 4 2 e 2 ( α 1 − β 1 ) K 0 = 0, ( α 1 − β 1 ) K + = ( L r 9 + L r 10 ) π m K F 2 15/40 K

  16. 180 σ (cos θ ≤ 0 . 8) (nb) 160 Five polyn.parameters fitted Belle 140 Crystal Ball 120 100 80 π 0 π 0 data : [ γγ → π 0 π 0 ] 60 Integrated cross sections: 40 20 agreement is fair 0 0.4 0.6 0.8 1 1.2 E (GeV) 18 18 18 16 E=0.61 16 E=0.81 16 E=0.87 14 14 14 dσ/d cos θ (nb) 12 12 12 10 10 10 8 8 8 6 6 6 4 4 4 2 2 2 0 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Differential cross sections 50 60 350 [ γγ → π 0 π 0 ] E=0.97 55 E=1.07 E=1.29 300 45 50 larger angular coverage 45 250 40 40 200 35 35 needed 150 30 30 25 100 20 25 50 15 20 10 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 16/40

  17. σ (cos θ ≤ 0 . 6) (nb) π + π − data 300 Belle Mark II CELLO 250 200 Integrated cross sections: 150 [ γγ → π + π − ] some tension w. Mark II 100 50 0.4 0.6 0.8 1 1.2 E (GeV) 250 250 250 dσ/d cos θ (nb) E=0.97 E=0.80 E=0.90 Differential cross sections: 200 200 200 150 150 150 100 Needed: 100 100 50 Better precision 50 50 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 [ γγ → π + π − ] 300 550 600 Larger angular 500 550 E=1.29 E=1.17 250 E=1.07 450 500 400 450 200 350 400 coverage 300 350 150 250 300 200 250 100 150 200 100 150 50 50 100 0 0 50 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 17/40

  18. σ → 2 γ couplings Dai Pennington (2014) Present work Hoferichter (2011) Mennessier (2011) Mao (2009) Mennessier (2008) Bernabeu (2008) Oller (2008) Pennington (2008) Oller (2008) Pennington (2006) 0.5 1 1.5 2 2.5 3 3.5 4 4.5 Γ( σ → 2 γ ) (KeV) 18/40

  19. From γγ to γγ ∗ ( q 2 ) 19/40

  20. Goal is to extend the same formalism to γγ ∗ ( q 2 ) → ππ (not seemed to have been considered previously) Two physically accessible situations: e − e + → γππ ( q 2 > 4 m 2 π ) ( q 2 < 0) e − γ → e − ππ Issues to address 1) “left-hand” cut ( q 2 > 4 m 2 π ) 2) Form factors 20/40

  21. Left-hand cut when q 2 � = 0 Definition of Born term: compute diagrams with sQED and q 2 � = 0 Influence of pion form factor � π + ( p ) | j µ ( 0 ) | π + ( p ′ ) � = ( p + p ′ ) µ F v π (( p − p ′ ) 2 ) First two diagrams mult. by F v π ( q 2 ) Gauge invariance: ⇒ mult. also third diagram 21/40

  22. Consider J = 0 partial wave projection � 4 m 2 � ( s , q 2 ) = F v π ( q 2 ) σ π ( s ) log 1 + σ π ( s ) h Born π 1 − σ π ( s ) − 2 q 2 0 s − q 2 � with σ π ( s ) = 1 − 4 m 2 π / s Cut is on the negative real axis π pole at s = q 2 in the physical region But: if q 2 > 4 m 2 Note: s = q 2 corresponds to soft photon 22/40

  23. Omn` es dispersive integral: � ∞ ds ′ sin δ ( s ′ ) ( 4 m 2 π L π ( s ′ ) − 2 q 2 ) I ( s , q 2 ) = 1 ( s ′ − s )( s ′ − q 2 ) | Ω ( s ′ ) | π 4 m 2 π well defined: both s , q 2 energy variables, I ( s , q 2 ) defined with lim ǫ → 0 s + i ǫ , q 2 + i ǫ Note: Fermi-Watson breaks down [ Creutz, Einhorn PR D1 (1970) 2537 ] Unitarity: Im � γγ ∗ | ππ � = � γγ ∗ | ππ �� ππ | ππ � + � γ ∗ | ππ �� γππ | ππ � 23/40

  24. Further contributions to left-hand cut 8 Cut : 6 4 Im ( s ) /m 2 π 2 0 -2 -4 -6 -8 -20 -10 0 10 20 30 40 50 Re ( s ) /m 2 π Overlaps with positive real axis Problem with Omn` es ? 24/40

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend