direct analysis of neutrals using superconducting
play

Direct analysis of neutrals using superconducting detector in tandem - PDF document

Direct analysis of neutrals using superconducting detector in tandem mass spectrometry TOD: Novel Developments in Mass Spectrometry Instrumentation: Analyzers, Detectors, Tandem Instruments ! City hall, May 31, 2009 ASMS2009, Philadelphia !


  1. Direct analysis of neutrals using superconducting detector in tandem mass spectrometry � TOD: Novel Developments in Mass Spectrometry Instrumentation: Analyzers, Detectors, Tandem Instruments ! City hall, May 31, 2009 � ASMS2009, Philadelphia ! Neutral loss in MS � • � MS analyzes ions only. � • � Ion reactions in MS/MS produce metastable molecules and then ionic and neutral fragments. � [R. Cooks, ASMS2008 tutorial lecture, Metastable Ions: Past and Future in Mass Spectrometry] ! ABA + *( < life time ) � ABA *( < life time ) � � AB + + A � � AB + A � � ABA + + N � ABA * + N + � ABA + � ABA + * � AB + A + � � A + B + A � � A + + B + A AA + B � � � � ... CAD ! ETD ! � • � ETD requires multiply-charged precursor ions so that at least one of the fragments has a charge. � • � Neutral products are lost, which is called “ neutral loss .” �

  2. Re-ionization MS (indirect MS for neutral fragments) � • � Neutralization re-ionization mass spectroscopy (NRMS) � • � Charge inversion mass spectroscopy (CIMS) � in 1980 � s. � • � Additional fragmentation during the re-ionization process may take place. � • � Efficiency of electron multiplier detectors depends on charge states; quantitative analysis of reaction branches may be difficult. ! Ref. e.g. C. Wesdemiotis, F. McLafferty, Chem. Rev . 87 , 485 (1987). S. Hayakawa, J. Mass Spectrom . 39 , 111 (2004). ! A method of direct analysis for neutral fragments � Kinetic energy sensitive � + � Si surface barrier detector � E � (100% detection efficiency, � + � � E = 20 keV) � � A l u � A Heavy ion synchrotron storage ring � S i � E 1 � + � (MeV, d > 10 m ) � E 2 � E 3 � e – or ions � r a l � n e u t l y O n ~ cm � V ) � M e t s ( d u c p r o E = E 1 + E 2 + E 3 � Dissociative recombination (DR) or (with eV KER) � Merged-beams experiments � Ref. e.g.: R. Thomas, Mass Spectrom. Rev ., 27 , 485 (2008). A. Florescu-Mitchella, J. Mitchella, Phys. Rep . 430 , 277 (2006). N. Adams, V. Poterya, and L. Babcock, Mass Spectrom. Rev . 25 , 798 (2006). R. Phaneuf et al ., Rep. Prog. Phys . 62, 1143 (1999). !

  3. C 4 H + DR experiment at ASTRID(Denmark) � a. C 4 H + + e � � C 4 H Au � Al � C 4 � b. � � C 3 + C Si � c. � � C 2 + C 2 d. � C 2 + C + C ! ~ cm � T � C 2 � C � C 3 � Ref. G. Angelova et al. , Int. J. Mass Spectrom . 232, 195 (2004). K. Berkner et al., Proc. 7 th Int. Conf. on Phys. of Electronic and Atomic Collisions, 422 (1971). ! Heavy-ion storage ring facilities � FLAIR hall, GSI ! CRYRING (Stockholm), H. Danared et al ., Proceedings of EPAC2006,Edinburgh !

  4. Our method, kinetic energy ( KE ) spectroscopy for neutrals in keV � Kinetic energy � MS-II: E = E 1 + E 2 + E 3 � sensitive � cryodetector � (with eV KER) � (KEMS) � Cryostat � ( � E = 200 eV) � (0.3 K) � Single molecule hit for each pixel � E 2 � E 3 � + � E 1 � E 3 � Electrostatic sector � Ion deflector � + � + � ! E 3 � Collision chamber � + � + � (CAD, ETD) � E � Xe � ion source � (3 keV, EI) � MS-I Magnetic sector � 3 m � A cryodetector for neutrals as well as ions � ! ! ! ! 1 ! ! ! -./$/$0 ! 300 nm � Nb ! 1 nm AlO x � Al � Al � "#$$%&'$()*#++%$,) ! fabricated at AIST ! Nb ! Si substrate ! • � operates in a keV range. Ref. � M. Frank et al , Mass Spectrom. Rev . 18 , 155 (1999). � • � 100% detection efficiency D. Koppenaal et al ., Anal. Chem . 419A (2005). � for both neutrals and ions M. Ohkubo, Physica C 468 , 1987 (2008). � S. Shiki et al ., J. Mass Spectrom . 43 , 1686 (2008). � • � 100 times better KE resolution ! S. Tomita et al ., Appl. Phys. Lett. 91 , 053507 (2007). � K. Suzuki et al ., Appl. Phys. Exp. 1 , 031702 (2008). � A. Casaburi et al ., Appl. Phys. Lett. 94 , 212502 (2009). �

  5. Instruments for direct neutral analysis � Circumference = 52 m ! CRYRING, Stockholm ! http://www.msi.se/MSL_files/Cryring.html ! 3 m � Observed physical phenomena are different, but the compact lab-based MS/MS instrument is unique; ions and neutrals without re-ionization. � (The cryodetector is also useful for electrostatic storage rings at ~20 keV.) � MS/KEMS instrument, AIST, Tsukuba ! Artificial peak � (3 keV CH 3 CO + ) without Xe target gas � SiO 2 (700 nm) � 100 µm � 32% m / � m = 14 �

  6. Two modifications to eliminate the artificial peak � 1. � bigger size to reduce � 2. insertion of a phonon the flame ratio � converter layer into the SiO 2 film � 200 µm � M. Ohkubo et al ., J Low Temp Phys 151 , 760 (2008). ! Improved response � 3 keV CH 3 CO + without Xe target �

  7. MS/KEMS experiment � • � 3 keV singly-charge precursor ions: acetyl and acetone � – � (non QET molecules, dissociation from electronically excited state) � • � Target gas: Xe 10 -5 Pa ( < 20 % reduction of precursor flux ) � – � A high charge-exchange neutralization; CAD + ETD � • � Precursor ions, neutralized precursor, ionic fragments, neutral fragments were separated by the ion deflector and kinetic energies. � E 1 � E E 2 � E 3 � CH 3 CO E = E 1 + E 2 + E 3 ! (CH 3 ) 2 CO � CO CH 3 Reaction of acetyl (CH 3 CO) � Raw data � Precursor � subtracted � Molecule yield [counts /s] ! E 2 ! E 1 ! E ! • � Life time of metastable CH 3 CO(A) = a few µs � E = E 1 + E 2 ! • � Neutral CO, CH 3 + : CH 3 = 7 : 3 � • � CH 3 + (CAD), neutral CH 3 (ETD) � E 1 � E � E 2 � • � CH 3 CO + (A) � CH 3 + + CO(CAD) � 70% � CH 3 CO � CO + CH 3 ! • � CH 3 CO • (A) � CH 3 • + CO(ETD) � 30% �

  8. Reaction of acetone (CH 3 COCH 3 ) � Raw data � Precursor � subtracted � E = E 1 + E 2 + E 3 ! • � Life time of metastable CH 3 CO(A) = ~ 100 � s E 1 � E • � neutral CH 3 and CO, CH 3 CO + : CH 3 CO : CO = 7 : 1 : 2 ! E 2 � • � (CH 3 ) 2 CO + • (A) � CH 3 CO + + CH 3 • (CAD) � 70% � E 3 � CH 3 CO • � (CH 3 ) 2 CO (A) � CH 3 CO • + CH 3 • (ETD) � 10% � (CH 3 ) 2 CO � CO • � (CH 3 ) 2 CO (A) � CH 3 • + CH 3 • + CO (ETD) � 20% � CH 3 Summary � • � Lab-based MS/KEMS instrument for both ionic and neutral fragments realized no “ neutral loss” . • � Cryodetector has 100 times better KE resolution than Si detector. • � Collision of acetyl and acetone with Xe leads to CAD and ETD. • � Branching ratios were directly determined even when only neutral fragments are produced. • � In future, – � statistics and KE resolution must be improved (CH 2 , CH, C). – � artificial peak must be eliminated completely. – � coincidence experiment with array detector ( KE and scattering angle). !

  9. MS instruments equipped with cryodetectors, AIST � < 4,500 Da, < 3 keV > 1 MDa, 20 keV Double-focusing MS (EI/CI/FAB) MALDI TOF MS (100 channels) ! > 1 MDa, 20 keV MALDI for sub-nano second response < ~200k Da with mass-independent sensitivity ! ESI TOF MS (100 channels) Acknowledgement �

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend