dirac g 2
play

Dirac: g = 2 2 + muon anomaly Electromagnetic Lepton Vertex ( - PowerPoint PPT Presentation

The Muon g 2 : present and future Fred Jegerlehner, DESY Zeuthen/Humboldt University Berlin Strong Coupling Gauge Theories Beyond the Standard Model (SCGT14mini) March 5 - March 7, 2014 Nagoya University, Nagoya, Japan


  1. The Muon g − 2 : present and future Fred Jegerlehner, DESY Zeuthen/Humboldt University Berlin ✬ ✩ “Strong Coupling Gauge Theories Beyond the Standard Model” (SCGT14mini) March 5 - March 7, 2014 Nagoya University, Nagoya, Japan ✫ ✪ F . Jegerlehner SCGT14Mini, Nagoya, Japan , March 5 - March 7, 2014

  2. Outline of Talk: ❖ Introduction ❖ Standard Model Prediction for a µ ❖ The hadronic effects and precision limitations ❖ Effective field theory: the Resonance Lagrangian Approach ❖ The hadronic LbL: setup and problems ❖ Theory vs experiment: do we see New Physics? ❖ Future F. Jegerlehner SCGT14Mini, Nagoya, Japan , March 5 - March 7, 2014 1

  3. Introduction Particle with spin � s ⇒ magnetic moment � µ (internal current circulating) e � � µ = g µ 2 m µ c � g µ = 2 (1 + a µ ) s ; , a µ = α Dirac: g µ = 2 2 π + · · · muon anomaly Electromagnetic Lepton Vertex µ ( p ′ ) γ ( q ) � � γ µ F 1 ( q 2 ) + i σ µν q ν u ( p ′ ) 2 m µ F 2 ( q 2 ) = ( − i e ) ¯ u ( p ) µ ( p ) F 1 (0) = 1 ; F 2 (0) = a µ a µ responsible for the Larmor precession F. Jegerlehner SCGT14Mini, Nagoya, Japan , March 5 - March 7, 2014 2

  4. ω of beam of spin particles in a homogeneous magnetic field � Larmor precession � B µ ⇒ ⇒ Million Events per 149.2ns ⇒ 10 ⇒ Storage 1 ⇒ Ring -1 ⇒ 10 eB ω a = a µ ⇒ mc -2 ⇒ 10 spin ⇒ momentum ⇒ -3 10 0 20 40 60 80 100 Time modulo 100 s [ s] µ µ ∼ 12 ′ /circle actual precession × 2 ω is directly proportional to � Magic Energy: � B at magic energy ∼ 3.1 GeV � E ∼ 3 . 1 GeV � � � � � a µ � � β × � a µ � ω a = e 1 at ”magic γ ” ≃ e � B − a µ − E B γ 2 − 1 m m CERN, BNL g-2 experiments Stern, Gerlach 22: g e = 2 ; Kusch, Foley 48: g e = 2 (1 . 00119 ± 0 . 00005) F. Jegerlehner SCGT14Mini, Nagoya, Japan , March 5 - March 7, 2014 3

  5. In a uniform magnetic field, as in muon g − 2 experimental setup: ω a /ω p ω a R a µ = γ ω c = µ µ /µ p − ω a /ω p = λ −R ❒ ω p = ( e / m p c ) � B � free proton NMR frequency ❒ R = ω a /ω p = 0 . 003 707 2063(20) from E-821 ❒ λ = ω L /ω p = µ µ /µ p = from hyperfine splitting of muonium 3 . 18334539(10) value used by E-821 3 . 183345107(84) new value CODATA 2011: [raXiv:1203.5425v1] ⇒ change in a µ : + 1 . 10 × 10 − 10 ✤ ✜ = (11 659 209 . 1 ± 5 . 4 ± 3 . 3[6 . 3]) × 10 − 10 updated a exp µ ✣ ✢ F. Jegerlehner SCGT14Mini, Nagoya, Japan , March 5 - March 7, 2014 4

  6. Standard Model Prediction for a µ What is new? ● new CODATA values for lepton mass ratios m µ / m e , m µ / m τ ● spectacular progress by Aoyama, Hayakawa, Kinoshita and Nio on 5–loop QED calculation (as well as improved 4–loop results) ❒ O ( α 5 ) electron g − 2 , substantially more precise α ( a e ) ❒ Complete O ( α 5 ) muon g − 2 , settles better the QED part ❒ QED Contribution The QED contribution to a µ has been computed through 5 loops m µ Growing coefficients in the α/π expansion reflect the presence of large ln m e ≃ 5 . 3 terms coming from electron loops. Input: F. Jegerlehner SCGT14Mini, Nagoya, Japan , March 5 - March 7, 2014 5

  7. a exp = 0 . 001 159 652 180 73(28) Gabrielse et al. 2008 e α − 1 ( a e ) = 137 . 0359991657(331)(68)(46)(24)[0 . 25 ppb] Aoyama et al 2012 a QED [0 . 36] × 10 − 11 = 116 584 718 . 851 (0 . 029) (0 . 009) (0 . 018) (0 . 007) µ � �� �� �� � � �� �� �� � � �� �� �� � � �� �� �� � α inp m e / m µ α 4 α 5 The current uncertainty is well below the ± 60 × 10 − 11 experimental error from E821 a QED C i [ ( α/π ) n ] × 10 11 # n of loops µ 1 +0.5 116140973.289 (43) 2 +0.765 857 426(16) 413217.628 (9) 3 +24.050 509 88(32) 30141.9023 (4) 4 +130.8796(63) 381.008 (18) 5 +753.290(1.04) 5.094 (7) tot 116584718.851 (0.036) F. Jegerlehner SCGT14Mini, Nagoya, Japan , March 5 - March 7, 2014 6

  8. 1 diagram Schwinger 1948 ❶ 7 diagrams Peterman 1957, Sommerfield 1957 ❷ ❸ 72 diagrams Lautrup, Peterman, de Rafael 1974, Laporta, Remiddi 1996 ❹ 871 diagrams Kinoshita 1999, Kinoshita, Nio 2004, Ayoama et al. 2009/2012 ❺ estimates of leading terms Karshenboim 93, Czarnecki, Marciano 00, Kinoshita, Nio 05 ❏ all 12672 diagrams (fully automated numerical) Ayoama et al. 2012 F. Jegerlehner SCGT14Mini, Nagoya, Japan , March 5 - March 7, 2014 7

  9. ❒ Weak contributions Brodsky, Sullivan 67, ..., Bardeen, Gastmans, Lautrup 72 Higgs contribution tiny! W W a weak(1) = (194 . 82 ± 0 . 02) × 10 − 11 + + µ ν µ Z H Kukhto et al 92 π ln MZ α potentially large terms ∼ G F m 2 µ m µ e , u , d , · · · W W Peris, Perrottet, de Rafael 95 µ µ ν µ ν µ γ • • Z quark-lepton (triangle anomaly) cancellation + + + · · · γ µ Z W Czarnecki, Krause, Marciano 96 Heinemeyer, St¨ ockinger, Weiglein 04, Gribouk, Czarnecki 05 full 2–loop result Most recent evaluations: improved hadronic part (beyond QPM) a weak = (154 . 0 ± 1 . 0[had] ± 0 . 3[m H , m t , 3 − loop]) × 10 − 11 new: m H known! µ (Knecht, Peris, Perrottet, de Rafael 02, Czarnecki, Marciano, Vainshtein 02, FJ 12, Gnendiger, St¨ ockinger, St¨ ockinger-Kim 13) F. Jegerlehner SCGT14Mini, Nagoya, Japan , March 5 - March 7, 2014 8

  10. ❒ Hadronic stuff: the limitation to theory General problem in electroweak precision physics: contributions from hadrons (quark loops) at low energy scales Leptons Quarks g e, µ, τ < α : weak coupling u, d, s, · · · < pQED ✓ γ γ γ γ γ > > α s : strong coupling ✗ pQCD (a) (b) (c) u , d , · · · u , d , · · · µ µ γ γ γ γ Z • • + + + · · · γ γ ( Z ) µ µ (a) Hadronic vacuum polarization O ( α 2 ) , O ( α 3 ) Light quark loops (b) Hadronic light-by-light scattering O ( α 3 ) ↓ (c) Hadronic effects in 2-loop EWRC O ( α G F m 2 µ ) Hadronic “blobs” F. Jegerlehner SCGT14Mini, Nagoya, Japan , March 5 - March 7, 2014 9

  11. � ❒ Evaluation of a had µ � � � � Leading non-perturbative hadronic contributions a had � � can be obtained in terms of µ R γ ( s ) ≡ σ (0) ( e + e − → γ ∗ → hadrons) / 4 πα 2 3 s data via dispersion integral: E 2 ∞ cut ds R pQCD ( s ) ˆ R data ( s ) ˆ � � K ( s ) � α m µ K ( s ) � 2 � � γ γ a had = ds + µ 3 π s 2 s 2 4 m 2 E 2 π cut ● Experimental error implies theoretical uncertainty! ● Low energy contributions enhanced: ∼ 75% come from region 4 m 2 π < m 2 ππ < M 2 Φ Data: CMD-2, SND, KLOE, BaBar a had(1) = (690 . 7 ± 4 . 7)[695 . 5 ± 4 . 1] 10 − 10 µ e + e − –data based [incl. BaBar MD09] 1.0 GeV ρ, ω ρ, ω 0.0 GeV, ∞ 0.0 GeV, ∞ Υ 3.1 GeV 9.5 GeV ψ 3.1 GeV 2.0 GeV 2.0 GeV φ, . . . φ, . . . 1.0 GeV F. Jegerlehner SCGT14Mini, Nagoya, Japan , March 5 - March 7, 2014 10

  12. γ hard e + γ φ π + π − , ρ 0 hadrons e − φ ; s ′ = s (1 − k ) , k = E γ /E beam s = M 2 a) b) a) Radiative return, b) Standard energy scan. ❖ Good old idea: use isospin symmetry to include existing high quality τ –data (including isospin corrections) u, ¯ e + ¯ d γ γ π + π − , · · · [ I = 1] e − u, d ⇑ isospin rotation ⇓ u ¯ τ − W W π 0 π − , · · · ν µ ¯ d Corrected data: large discrepancy [ ∼ 10%] persists! τ vs. e + e − problem! [manifest since 2002] F. Jegerlehner SCGT14Mini, Nagoya, Japan , March 5 - March 7, 2014 11

  13. Recent: τ (charged channel) vs. e + e − (neutral channel) puzzle resolved F.J.& R. Szafron, ρ − γ interference (absent in charged channel): − i Π µν ( π ) ( q ) = + . γρ ✛ ✘ � 0 ( s ) = r ργ ( s ) R IB ( s ) � − ( s ) ✚ ✙ ❒ τ require to be corrected for missing ρ − γ mixing! ❒ results obtained from e + e − data is what goes into a µ ❒ off-resonance tiny for ω, φ in ππ channel (scaled up Γ V / Γ ( V → ππ ) F. Jegerlehner SCGT14Mini, Nagoya, Japan , March 5 - March 7, 2014 12

  14. τ decays ALEPH 1997 390 . 75 ± 2 . 65 ± 1 . 94 388 . 74 ± 4 . 00 ± 2 . 07 ALEPH 2005 380 . 25 ± 7 . 27 ± 5 . 06 OPAL 1999 391 . 59 ± 4 . 11 ± 6 . 27 CLEO 2000 394 . 67 ± 0 . 53 ± 3 . 66 Belle 2008 391 . 06 ± 1 . 42 ± 2 . 06 τ combined e + e − +CVC 386 . 58 ± 2 . 76 ± 2 . 59 CMD-2 2006 383 . 99 ± 1 . 40 ± 4 . 99 SND 2006 380 . 21 ± 0 . 34 ± 3 . 27 KLOE 2008 377 . 35 ± 0 . 71 ± 3 . 50 KLOE 2010 389 . 35 ± 0 . 37 ± 2 . 00 BABAR 2009 e + e − combined 385 . 12 ± 0 . 87 ± 2 . 18 a µ [ ππ ] , I = 1 , (0 . 592 − 0 . 975) GeV 380 390 400 × 10 − 10 I=1 part of a had µ [ ππ ] F. Jegerlehner SCGT14Mini, Nagoya, Japan , March 5 - March 7, 2014 13

  15. τ decays ALEPH 1997 385 . 63 ± 2 . 65 ± 1 . 94 383 . 54 ± 4 . 00 ± 2 . 07 ALEPH 2005 375 . 39 ± 7 . 27 ± 5 . 06 OPAL 1999 386 . 61 ± 4 . 11 ± 6 . 27 CLEO 2000 389 . 62 ± 0 . 53 ± 3 . 66 Belle 2008 385 . 96 ± 1 . 40 ± 2 . 10 τ combined e + e − +CVC 386 . 58 ± 2 . 76 ± 2 . 59 CMD-2 2006 383 . 99 ± 1 . 40 ± 4 . 99 SND 2006 380 . 21 ± 0 . 34 ± 3 . 27 KLOE 2008 377 . 35 ± 0 . 71 ± 3 . 50 KLOE 2010 389 . 35 ± 0 . 37 ± 2 . 00 BABAR 2009 e + e − combined 385 . 12 ± 0 . 87 ± 2 . 18 a µ [ ππ ] , I = 1 , (0 . 592 − 0 . 975) GeV 380 390 400 × 10 − 10 I=1 part of a had µ [ ππ ] F. Jegerlehner SCGT14Mini, Nagoya, Japan , March 5 - March 7, 2014 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend