dimension reduction with heavy tails
play

Dimension Reduction with Heavy Tails Gabriel Kuhn Munich University - PowerPoint PPT Presentation

Dimension Reduction with Heavy Tails Gabriel Kuhn Munich University of Technology http/www.ma.tum.de/stat 4th Conference on Extreme Value Analysis Gothenburg, August 15 . 19 . , 2005 Kl uppelberg, C. and Kuhn, G. (2005) Dimension


  1. Dimension Reduction with Heavy Tails Gabriel Kuhn Munich University of Technology http/www.ma.tum.de/stat 4th Conference on Extreme Value Analysis Gothenburg, August 15 . – 19 . , 2005 Kl¨ uppelberg, C. and Kuhn, G. (2005) Dimension Reduction with Reference: Heavy Tails. In preparation . � (Gabriel Kuhn, TU Munich) c EVA2005, Gothenburg – 1 –

  2. Factor Model • Observable d -dimensional random vector X X X • Model: X X X = µ µ + L µ L f L f + V f V V e e e L f f L – L L f f : k -dimensional non-observable common factors f f , loading matrix L L V e e V – V V e e : specific factors e e , diagonal matrix V V – ( f f f,e e e ) are uncorrelated (independent) X Distribution of X X described by linear combination of k factors with Idea: componentwise extra source of randomness. L T + V V 2 • Classical model: ( f f e e ) ∼ N k + d (0 0 I X Σ L L V f,e 0 , I I) and Cov( X X ) =: Σ Σ = L LL Disadvantages: – Data may not be normal – No heavy-tailed model – Dependence in extremes cannot be modeled – Margins of the same type • Task: Overcome disadvantages above � (Gabriel Kuhn, TU Munich) c EVA2005, Gothenburg – 2 –

  3. Distribution Models d U ( k ) • Elliptical Distribution: X µ A U X X = µ µ + G A A U U ( k ) ∼ unif { s A T A ∈ R d × k , Σ U s s : � s s s � = 1 } , A A Σ A A G > 0 independent of U Σ := A AA Σ) − 1 / 2 =: R X ) = EG 2 Σ Σ) − 1 / 2 Σ E ( X X X ) = µ µ µ , Cov( X X Σ Σ /k , Corr( X X X ) = diag(Σ Σ Σ Σdiag(Σ Σ R R U ( k ) ∼ N d ( µ d � χ 2 • Example: – normal: X X µ A U µ Σ X = µ µ + k A A U µ, Σ Σ) d U ( k ) d � � νχ 2 X µ k /χ 2 A U µ ν/χ 2 0 Σ – multivariate t ν : X X = µ µ + ν A A U = µ µ + ν N d (0 0 , Σ Σ) � (Gabriel Kuhn, TU Munich) c EVA2005, Gothenburg – 3 –

  4. Extended Factor Model L T + V V 2 = Σ L L V Σ Drop normal assumption and consider (with L LL Σ ): � � f f f d d U ( k + d ) , X X X = µ µ µ + L L L f f f + V V V e e e is elliptical: L L L f f f + V V V e e = (L e L L , V V V) = G (L L , V L V) U V U e e e e.g. choose multivariate t ν -distribution f e Remark: – f f and e e are uncorrelated but not independent – alternatively: same dependence structure, but arbitrary margins (copula approach) – P ( G > x ) ∼ Cx − ν needed for modelling tail dependence � (Gabriel Kuhn, TU Munich) c EVA2005, Gothenburg – 4 –

  5. Factorization L T +V V 2 • Standard approach uses (normal) ml algorithm for decomposition Σ Σ L L V Σ = L LL L T + V A)) 2 := (L V) T = L f ( k ) ( f ( k ) V 2 Definition: ml (A A A) = (L L L , V V V) , ml (A A L L , V V V)(L L L , V V L LL L V L T +V V 2 and neighborhood of Σ P Σ decomposable by f ( k ) • Lemma: Σ Σ Σ n − → Σ Σ Σ = L LL L L V Σ ml � 2 � P f ( k ) ⇒ ml (Σ Σ Σ n ) − → Σ Σ Σ • Interpretation: Given some consistent and composable covariance (correlation) estimator, the algorithm computes a consistent decomposition (independent of distribution model) • Remark: In application algorithm almost always produces a decomposition � (Gabriel Kuhn, TU Munich) c EVA2005, Gothenburg – 5 –

  6. Dependence Concepts iid ∼ ( ˜ X, ˜ • Kendall’s τ : Let ( X, Y ) Y ) � � � � ( X − ˜ X )( Y − ˜ ( X − ˜ X )( Y − ˜ − P τ := P Y ) > 0 Y ) < 0 Elliptical distribution ⇒ R R T T R = sin( π T T / 2) , T T = ( τ ij ) 1 ≤ i,j ≤ d • Tail Dependence: ( X, Y ) with margins F X , F Y λ := lim u ց 0 P ( Y < F ← Y ( u ) | X < F ← X ( u )) Elliptical distribution and P ( G > x ) ∼ Cx − ν , ν ∈ (0 , ∞ ) � 2 � F ← t,ν +1 (1 − Λ / 2) ⇒ R R R = 1 − 2 � 2 � F ← t,ν +1 (1 − Λ / 2) ν + 1 + Λ Λ = ( λ ij ) 1 ≤ i,j ≤ d and F t,ν : df of 1 -dim t ν Λ • Remark: Both dependence concepts independent of margins � (Gabriel Kuhn, TU Munich) c EVA2005, Gothenburg – 6 –

  7. Example • Choose d = 10 , k = 2 factors with loadings component 1 2 3 4 5 6 7 8 9 10 L L L · , 1 . 85 . 76 . 67 . 58 . 49 . 41 . 32 . 23 . 14 . 05 L L L · , 2 . 17 . 41 . 55 . 64 . 71 . 77 . 81 . 84 . 85 . 86 V 2 ) diag(V V . 25 . 25 . 25 . 25 . 25 . 25 . 25 . 25 . 25 . 25 L T + V V 2 = R ( ⇒ L L L V R LL R is a correlation matrix) • consider factor model(s) (given before) d 1. X X X =L L L f f f + V V Ve e e ∼ t d (0 0 0 , R R R , ν ) with ν = 6 2. X X has same t (0 X 0 , R 0 R R , ν ) dependence structure, ν but different margins F i = t ν i , ν ν = (3 , . . . , 10) • Simulation length n = 2000 , repeat 500 times Plots of different estimation methods and 95% -CI’s of loadings � (Gabriel Kuhn, TU Munich) c EVA2005, Gothenburg – 7 –

  8. factor 1 factor 2 specific factor R R R n R R R n R R R n 1 1 1 loadings loadings loadings . 6 . 6 . 6 . 2 . 2 . 2 0 0 0 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 components components components R mle R mle R mle R R R R R R n n n 1 1 1 loadings loadings loadings . 6 . 6 . 6 R , ν ) . 2 . 2 . 2 0 0 0 R 0 , R 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 components components components 0 X ∼ t d (0 T T T R T T R T T R T T R R R R R R n n n 1 1 1 loadings loadings loadings . 6 . 6 . 6 X X . 2 . 2 . 2 0 0 0 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 components components components R Λ Λ Λ R Λ Λ Λ Λ R Λ Λ R R R R R R n n n 1 1 1 loadings loadings loadings . 6 . 6 . 6 . 2 . 2 . 2 0 0 0 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 components components components � (Gabriel Kuhn, TU Munich) c EVA2005, Gothenburg – 8 –

  9. factor 1 factor 2 specific factor R R R n R R R n R R R n 1 1 1 X has t -dependence, different margins loadings loadings loadings . 6 . 6 . 6 . 2 . 2 . 2 0 0 0 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 components components components R mle R mle R mle R R R R R R n n n 1 1 1 loadings loadings loadings . 6 . 6 . 6 . 2 . 2 . 2 0 0 0 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 components components components R T T T R T T T R T T T R R R R R R n n n 1 1 1 loadings loadings loadings . 6 . 6 . 6 . 2 . 2 . 2 0 0 0 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 X X components components components R Λ Λ Λ R Λ Λ Λ R Λ Λ Λ R R R R R R n n n 1 1 1 loadings loadings loadings . 6 . 6 . 6 . 2 . 2 . 2 0 0 0 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 components components components � (Gabriel Kuhn, TU Munich) c EVA2005, Gothenburg – 9 –

  10. Example • Consider 8-dimensional set of data: oil, s&p500, gbp, usd, chf, jpy, dkk and sek (exchange rates w.r.t. euro) • Daily log-returns between May, 1985 to June, 2004 (n=4904) • Apply factor analysis with different estimators as before � (Gabriel Kuhn, TU Munich) c EVA2005, Gothenburg – 10 –

  11. factor 1 factor 2 1 . 0 1 . 0 4 2 3 1 3 1 2 4 4 4 4 1 0 . 5 0 . 5 4 1 3 1 2 3 2 4 loadings 2 2 1 1 2 4 3 1 4 4 1 3 4 2 2 1 3 4 1 3 3 3 2 2 1 0 . 0 0 . 0 3 3 2 2 2 1 1 1 3 2 3 3 1 4 2 3 emp emp 4 4 1 4 1 mle mle 2 2 − 0 . 5 − 0 . 5 tau tau 3 3 taild taild 4 4 p p 0 d y k k 0 d y k k f f l l h h i 0 b p k e i 0 b p k e s s o o u c u c 5 g j d s 5 g j d s p p & & s s factor 3 specific factors 1 . 0 1 . 0 2 1 3 4 1 2 3 3 emp 1 4 2 1 2 mle 3 2 2 tau 3 3 1 2 3 1 1 taild 0 . 5 4 0 . 5 4 4 loadings 4 4 3 4 3 2 3 3 3 1 1 2 1 3 3 2 4 2 4 0 . 0 0 . 0 1 1 4 4 4 4 2 1 3 3 1 2 2 3 1 4 1 2 2 emp 4 1 2 1 4 2 mle − 0 . 5 − 0 . 5 tau 3 4 taild 0 p k k 0 p k k d f y d f y l l i h i h 0 b s p k e 0 b s p k e o o 5 u c s 5 u c s g j d g j d p p & & s s � (Gabriel Kuhn, TU Munich) c EVA2005, Gothenburg – 11 –

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend