diffraction theory

Diffraction Theory 1 2 , 2 4 3 5 1 + 2 - PowerPoint PPT Presentation

Diffraction Theory 1 2 , 2 4 3 5 1 + 2 , + 5 , , = 1 , + 3 , + 4 , + =


  1. Diffraction Theory 1

  2. 2

  3. 𝐹 Τ¦ 𝑠, 𝑒 𝑠 2 𝑠 4 𝑠 3 𝑠 5 𝑠 1 + 𝐹 2 Τ¦ 𝑠, 𝑒 + 𝐹 5 Τ¦ 𝑠, 𝑒 𝐹 Τ¦ 𝑠, 𝑒 = 𝐹 1 Τ¦ 𝑠, 𝑒 + 𝐹 3 Τ¦ 𝑠, 𝑒 + 𝐹 4 Τ¦ 𝑠, 𝑒 + … = ෍ 𝐹 𝑗 Τ¦ 𝑠, 𝑒 𝑗 𝑠 1 𝑓 𝑗 𝑙 𝑠 1 βˆ’ πœ• 𝑒 + 𝜁 1 + 𝐹 0,2 + 𝐹 0,3 + 𝐹 0,4 + 𝐹 0,5 𝐹 0,1 𝑓 𝑗 𝑙 𝑠 2 βˆ’ πœ• 𝑒 + 𝜁 2 𝑓 𝑗 𝑙 𝑠 3 βˆ’ πœ• 𝑒 + 𝜁 3 𝑓 𝑗 𝑙 𝑠 4 βˆ’ πœ• 𝑒 + 𝜁 4 𝐹 Τ¦ 𝑠, 𝑒 = 𝑓 𝑗 𝑙 𝑠 5 βˆ’ πœ• 𝑒 + 𝜁 5 + β‹― 𝑠 2 𝑠 3 𝑠 𝑠 5 4 𝐹 0,𝑗 𝑓 𝑗 𝑙 𝑠 𝑗 βˆ’πœ• 𝑒 + 𝜁 𝑗 = ෍ 𝑠 𝑗 3 𝑗

  4. Huygens-Fresnel Principle 4

  5. 𝐹 0,𝑗 𝑓 𝑗 𝑙 𝑠 𝑗 βˆ’ πœ• 𝑒 + 𝜁 𝑗 𝐹 𝑍, π‘Ž, 𝑒 = ෍ 𝑠 𝑗 𝑗 𝑗 𝑧, 𝑨 ෍ ΰΆ΅ 𝑒𝑧 𝑒𝑨 𝑗 𝐹 0 𝑧, 𝑨 π‘π‘žπ‘“π‘ π‘’π‘£π‘ π‘“ 𝑓 𝑗 𝑙 𝑠 𝑧, 𝑨 βˆ’ πœ• 𝑒 + 𝜁 𝑧, 𝑨 = ΰΆ΅ 𝑒𝑧 𝑒𝑨 𝑠 𝑧, 𝑨 π‘π‘žπ‘“π‘ π‘’π‘£π‘ π‘“ 𝑧 𝑍 𝑠 𝑑 𝑨 π‘Ž 𝑑 2 + 𝑍 βˆ’ 𝑧 2 + π‘Ž βˆ’ 𝑨 2 𝑠 𝑧, 𝑨 = 5

  6. Fresnel Diffraction 1 + 𝑍 βˆ’ 𝑧 2 + π‘Ž βˆ’ 𝑨 2 𝑑 2 + 𝑍 βˆ’ 𝑧 2 + π‘Ž βˆ’ 𝑨 2 = 𝑑 1 + πœ‚ 2 𝑠 𝑧, 𝑨 = = 𝑑 𝑑 2 𝑑 2 πœ‚ 2 ≑ 𝑍 βˆ’ 𝑧 2 + π‘Ž βˆ’ 𝑨 2 𝑑 2 𝑑 2 = 𝑑 1 + πœ‚ 2 2 βˆ’ πœ‚ 4 8 + πœ‚ 6 16 βˆ’ 5 πœ‚ 8 128 + β‹― 𝑙 𝑑 𝑛𝑏𝑦 πœ‚ 4 Fresnel Approximation β‰ͺ 𝜌 8 𝑠 𝑧, 𝑨 β‰… 𝑑 1 + πœ‚ 2 = 𝑑 1 + 𝑍 βˆ’ 𝑧 2 + π‘Ž βˆ’ 𝑨 2 2 𝑑 2 2 𝑑 2 2 = 𝑑 + 𝑍 2 + π‘Ž 2 + 𝑧 2 + 𝑨 2 βˆ’ 𝑍 𝑧 + π‘Ž 𝑨 2 𝑑 𝑑 2 𝑑 6

  7. 𝑙 𝑑 𝑛𝑏𝑦 πœ‚ 4 Fresnel Approximation β‰ͺ 𝜌 8 𝑠 𝑧, 𝑨 β‰… 𝑑 + 𝑍 2 + π‘Ž 2 + 𝑧 2 + 𝑨 2 βˆ’ 𝑍 𝑧 + π‘Ž 𝑨 2 𝑑 𝑑 2 𝑑 𝐹 0 𝑧, 𝑨 𝑓 𝑗 𝑙 𝑠 𝑧, 𝑨 βˆ’ πœ• 𝑒 + 𝜁 𝑧, 𝑨 𝐹 𝑍, π‘Ž, 𝑒 = ΰΆ΅ 𝑒𝑧 𝑒𝑨 𝑠 𝑧, 𝑨 π‘π‘žπ‘“π‘ π‘’π‘£π‘ π‘“ 𝑑 + 𝑍 2 +π‘Ž 2 + 𝑧 2 +𝑨 2 𝐹 0 𝑧, 𝑨 𝑍 𝑧+π‘Ž 𝑨 𝑓 𝑗 𝑙 βˆ’ βˆ’ πœ• 𝑒 + 𝜁 𝑧, 𝑨 β‰… ΰΆ΅ 𝑒𝑧 𝑒𝑨 2 𝑑 𝑑 2 𝑑 𝑑 π‘π‘žπ‘“π‘ π‘’π‘£π‘ π‘“ 7

  8. 𝑙 𝑑 𝑛𝑏𝑦 πœ‚ 4 Fresnel Approximation β‰ͺ 𝜌 8 𝑠 𝑧, 𝑨 β‰… 𝑑 + 𝑍 2 + π‘Ž 2 + 𝑧 2 + 𝑨 2 βˆ’ 𝑍 𝑧 + π‘Ž 𝑨 2 𝑑 𝑑 2 𝑑 In addition to Fresnel Approximation: Fraunhofer Diffraction also known as Far-Field Diffraction 𝑙 𝑛𝑏𝑦 𝑧 2 + 𝑨 2 β‰ͺ 𝜌 2 𝑑 Fraunhofer Approximation 𝑛𝑏𝑦 𝑧 2 + 𝑨 2 β‰ͺ 1 πœ‡ 𝑑 8

  9. 𝑆 2 ≑ 𝑑 2 + 𝑍 2 + π‘Ž 2 𝑑 2 + 𝑍 βˆ’ 𝑧 2 + π‘Ž βˆ’ 𝑨 2 𝑆 2 βˆ’ 2 𝑍 𝑧 βˆ’ 2 π‘Ž 𝑨 + 𝑧 2 + 𝑨 2 𝑠 𝑧, 𝑨 = = 1 + βˆ’2 𝑍 𝑧 βˆ’ 2 π‘Ž 𝑨 + 𝑧 2 + 𝑨 2 β‰… 𝑆 βˆ’ 𝑍 𝑧 + π‘Ž 𝑨 = 𝑆 𝑆 2 𝑆 𝐹 0 𝑧, 𝑨 𝑓 𝑗 𝑙 𝑠 𝑧, 𝑨 βˆ’ πœ• 𝑒 + 𝜁 𝑧, 𝑨 𝐹 𝑍, π‘Ž, 𝑒 = ΰΆ΅ 𝑒𝑧 𝑒𝑨 𝑠 𝑧, 𝑨 π‘π‘žπ‘“π‘ π‘’π‘£π‘ π‘“ 𝑗 𝑙 𝑆 βˆ’ 𝑍 𝑧 + π‘Ž 𝑨 𝐹 0 𝑧, 𝑨 βˆ’ πœ• 𝑒 + 𝜁 𝑧, 𝑨 𝑆 β‰… ΰΆ΅ 𝑓 𝑒𝑧 𝑒𝑨 𝑆 π‘π‘žπ‘“π‘ π‘’π‘£π‘ π‘“ = 𝑓 𝑗 𝑙 𝑆 βˆ’πœ• 𝑒 𝐹 0 𝑧, 𝑨 𝑓 𝑗 𝜁 𝑧,𝑨 𝑓 βˆ’ 𝑗 𝑙 𝑍 𝑧 + π‘Ž 𝑨 ΰΆ΅ 𝑒𝑧 𝑒𝑨 𝑆 𝑆 π‘π‘žπ‘“π‘ π‘’π‘£π‘ π‘“ 9

  10. Fraunhofer Diffraction 𝑧 𝑆 2 ≑ 𝑑 2 + 𝑍 2 + π‘Ž 2 𝑍 𝑠 𝑆 𝑑 𝑨 π‘Ž 𝐹 𝑍, π‘Ž, 𝑒 = 𝑓 𝑗 𝑙 𝑆 βˆ’πœ• 𝑒 𝐹 0 𝑧, 𝑨 𝑓 𝑗 𝜁 𝑧, 𝑨 𝑓 βˆ’ 𝑗 𝑙 𝑍 𝑧 + π‘Ž 𝑨 ΰΆ΅ 𝑒𝑧 𝑒𝑨 𝑆 𝑆 π‘π‘žπ‘“π‘ π‘’π‘£π‘ π‘“ 10

  11. Illumination at the Aperture: In the examples to follow, we will consider a flat wavefront at normal incidence on the aperture Inside the aperture 𝐹 0 { 𝐹 0 𝑧, 𝑨 𝑓 𝑗 𝜁 𝑧, 𝑨 = Outside the aperture 0 𝐹 𝑍, π‘Ž, 𝑒 = 𝐹 0 𝑓 𝑗 𝑙 𝑆 βˆ’πœ• 𝑒 𝑓 βˆ’ 𝑗 𝑙 𝑍 𝑧 + π‘Ž 𝑨 ΰΆ΅ 𝑒𝑧 𝑒𝑨 𝑆 𝑆 π‘π‘žπ‘“π‘ π‘’π‘£π‘ π‘“ 11

  12. Apertures considered here: 1. Single Slit 2. Double Slit 3. Rectangular Aperture 4. Circular Aperture 12

  13. 𝑧 1. Single Slit 𝑒 𝑨 𝑧 π‘‘π‘—π‘œ πœ„ = 𝑍 𝑆 𝑍 𝑠 𝑆 𝑑 πœ„ 𝑍 2 + 𝑑 2 𝑆 ≑ π‘Ž 𝑨 𝑒 2 + ΰ΅— 𝐹 𝑍, π‘Ž, 𝑒 = 𝐹 0 𝑓 𝑗 𝑙 𝑆 βˆ’πœ• 𝑒 𝑓 βˆ’ 𝑗 𝑙 𝑍 𝑆 𝑧 𝑒𝑧 ΰΆ± 𝑆 𝑒 2 βˆ’ ΰ΅— 13

  14. 1. Single Slit, cont. 𝐹 𝑍, π‘Ž, 𝑒 = 𝐹 0 𝑓 𝑗 𝑙 𝑆 βˆ’ πœ• 𝑒 𝑒 π‘‘π‘—π‘œπ‘‘ 𝑙 𝑍 𝑒 2 𝐽 ≑ 𝐹 𝑆 2 𝑆 𝐽 0 ≑ 𝐹 0 2 𝐽 𝑍, π‘Ž = 𝐽 0 π‘‘π‘—π‘œπ‘‘ 2 𝑙 𝑍 𝑒 2 𝑆 2 𝑒 2 2 𝑆 𝑍(𝑛𝑛) 𝑙 𝑍 𝑛 𝑒 geometrical zeros at 𝑒 = 50 ¡𝑛 = 𝑛 𝜌 shadow 2 𝑆 πœ‡ = 0.6 ¡𝑛 𝑍 1 with 𝑛 = Β±1, Β±2, Β±3 𝑑 = 1 𝑛 𝑆 β‰… 1 𝑛 𝑛 = 𝑛 πœ‡ 𝑆 𝑍 𝑍 𝑍 βˆ’1 𝑒 𝐽 𝐽 0 π‘Ž ΰ΅— π‘‘π‘—π‘œ πœ„ 𝑛 = 𝑍 𝑆 = 𝑛 πœ‡ 𝑛 𝑒 14

  15. Mathematica 15

  16. 2. Double Slit 𝑧 𝑏 2 + ΰ΅— 𝑒 2 ΰ΅— 𝑒 𝑏 2 βˆ’ ΰ΅— 𝑒 2 ΰ΅— 𝑏 𝑨 βˆ’π‘ 2 + ΰ΅— 𝑒 2 ΰ΅— 𝑒 βˆ’π‘ 2 βˆ’ ΰ΅— 𝑒 2 ΰ΅— 16

  17. 𝑧 π‘‘π‘—π‘œ πœ„ = 𝑍 𝑆 𝑍 𝑠 𝑆 𝑑 πœ„ 𝑍 2 + 𝑑 2 𝑆 ≑ π‘Ž 𝑨 βˆ’π‘ 2+ ΰ΅— 𝑒 2 𝑏 2+ ΰ΅— 𝑒 2 ΰ΅— ΰ΅— 𝐹 𝑍, π‘Ž, 𝑒 = 𝐹 0 𝑓 𝑗 𝑙 𝑆 βˆ’πœ• 𝑒 𝑓 βˆ’ 𝑗 𝑙 𝑍 𝑓 βˆ’ 𝑗 𝑙 𝑍 𝑆 𝑧 𝑒𝑧 + 𝑆 𝑧 𝑒𝑧 ΰΆ± ΰΆ± 𝑆 βˆ’π‘ 2βˆ’ ΰ΅— 𝑒 2 𝑏 2βˆ’ ΰ΅— 𝑒 2 ΰ΅— ΰ΅— = 𝐹 0 𝑓 𝑗 𝑙 𝑆 βˆ’πœ• 𝑒 𝑒 π‘‘π‘—π‘œπ‘‘ 𝑙 𝑍 𝑒 2 𝑑𝑝𝑑 𝑙 π‘Ž 𝑏 𝑆 2 𝑆 2 𝑆 17

  18. 𝐹 𝑍, π‘Ž, 𝑒 = 𝐹 0 𝑓 𝑗 𝑙 𝑆 βˆ’πœ• 𝑒 𝑒 π‘‘π‘—π‘œπ‘‘ 𝑙 𝑍 𝑒 2 𝑑𝑝𝑑 𝑙 𝑍 𝑏 𝑆 2 𝑆 2 𝑆 𝐽 𝑍, π‘Ž = 4 𝐽 0 π‘‘π‘—π‘œπ‘‘ 2 𝑙 𝑍 𝑒 𝑑𝑝𝑑 2 𝑙 𝑍 𝑏 𝐽 0 ≑ 𝐹 0 2 2 𝑆 2 𝑒 2 2 𝑆 2 𝑆 𝑏 𝑒 Mathematica 18

  19. 3. Rectangular Aperture 𝑧 𝑏 𝑐 𝑨 19

  20. 𝐹 𝑍, π‘Ž, 𝑒 = 𝐹 0 𝑓 𝑗 𝑙 𝑆 βˆ’πœ• 𝑒 𝑓 βˆ’ 𝑗 𝑙 𝑍 𝑧 + π‘Ž 𝑨 ΰΆ΅ 𝑒𝑧 𝑒𝑨 𝑆 𝑆 π‘π‘žπ‘“π‘ π‘’π‘£π‘ π‘“ 𝑐 2 𝑏 2 ΰ΅— ΰ΅— = 𝐹 0 𝑓 𝑗 𝑙 𝑆 βˆ’πœ• 𝑒 𝑓 βˆ’ 𝑗 𝑙 𝑍 𝑓 βˆ’ 𝑗 𝑙 π‘Ž 𝑆 𝑧 𝑒𝑧 𝑆 𝑨 𝑒𝑨 ΰΆ± ΰΆ± 𝑆 βˆ’π‘ 2 βˆ’π‘ 2 ΰ΅— ΰ΅— = 𝐹 0 𝑓 𝑗 𝑙 𝑆 βˆ’πœ• 𝑒 𝑐 π‘‘π‘—π‘œπ‘‘ 𝑙 𝑍 𝑐 𝑏 π‘‘π‘—π‘œπ‘‘ 𝑙 π‘Ž 𝑏 𝑆 2 𝑆 2 𝑆 20

  21. 𝐽 𝑍, π‘Ž = 𝐽 0 π‘‘π‘—π‘œπ‘‘ 2 𝑙 𝑍 𝑐 π‘‘π‘—π‘œπ‘‘ 2 𝑙 π‘Ž 𝑏 2 𝑆 2 𝑆 𝐽 0 ≑ 𝐹 0 2 2 𝑆 2 𝑏 2 𝑐 2 𝑍 π‘Ž 21

  22. Emission of Semiconductor Laser 22

  23. 4. Circular Aperture 𝑧 = 𝜍 π‘‘π‘—π‘œ πœ’ 𝑧 𝜍 𝑏 πœ’ 𝑨 𝑨 = 𝜍 𝑑𝑝𝑑 πœ’ 23

  24. Observation Plane 𝑍 π‘Ÿ 𝑍 = π‘Ÿ π‘‘π‘—π‘œ Ξ¦ Ξ¦ π‘Ž π‘Ž = π‘Ÿ 𝑑𝑝𝑑 Ξ¦ 24

  25. 𝐹 𝑍, π‘Ž, 𝑒 = 𝐹 0 𝑓 𝑗 𝑙 𝑆 βˆ’πœ• 𝑒 𝑓 βˆ’ 𝑗 𝑙 𝑍 𝑧 + π‘Ž 𝑨 ΰΆ΅ 𝑒𝑧 𝑒𝑨 𝑆 𝑆 π‘π‘žπ‘“π‘ π‘’π‘£π‘ π‘“ 𝑍 𝑧 + π‘Ž 𝑨 = π‘Ÿ π‘‘π‘—π‘œ Ξ¦ 𝜍 π‘‘π‘—π‘œ πœ’ + π‘Ÿ 𝑑𝑝𝑑 Ξ¦ 𝜍 𝑑𝑝𝑑 πœ’ = π‘Ÿ 𝜍 𝑑𝑝𝑑 Ξ¦ 𝑑𝑝𝑑 πœ’ + π‘‘π‘—π‘œ Ξ¦ π‘‘π‘—π‘œ πœ’ = 𝜍 π‘Ÿ 𝑑𝑝𝑑 πœ’ βˆ’ Ξ¦ 𝑒𝑧 𝑒𝑨 = 𝜍 π‘’πœ’ π‘’πœ 𝑏 2𝜌 𝐹 π‘Ÿ, Ξ¦, 𝑒 = 𝐹 0 𝑓 𝑗 𝑙 𝑆 βˆ’πœ• 𝑒 π‘’πœ’ 𝑓 βˆ’ 𝑗 𝑙 𝜍 π‘Ÿ 𝑑𝑝𝑑 πœ’ βˆ’ Ξ¦ ΰΆ± 𝜍 π‘’πœ ΰΆ± 𝑆 𝑆 0 0 Due to axial symmetry, we can choose: Ξ¦ = 0 25

  26. A couple of integrals to solve: 𝑏 2𝜌 𝐹 π‘Ÿ, Ξ¦, 𝑒 = 𝐹 0 𝑓 𝑗 𝑙 𝑆 βˆ’πœ• 𝑒 π‘’πœ’ 𝑓 βˆ’ 𝑗 𝑙 𝜍 π‘Ÿ 𝑑𝑝𝑑 πœ’ ΰΆ± 𝜍 π‘’πœ ΰΆ± 𝑆 𝑆 0 0 26

  27. 2𝜌 1 π‘’πœ’ 𝑓 𝑗 𝑣 𝑑𝑝𝑑 πœ’ ≑ 𝐾 0 𝑣 Bessel function 2 𝜌 ΰΆ± of order zero 0 𝑏 2𝜌 𝐹 π‘Ÿ, Ξ¦, 𝑒 = 𝐹 0 𝑓 𝑗 𝑙 𝑆 βˆ’πœ• 𝑒 π‘’πœ’ 𝑓 βˆ’ 𝑗 𝑙 𝜍 π‘Ÿ 𝑑𝑝𝑑 πœ’ ΰΆ± 𝜍 π‘’πœ ΰΆ± 𝑆 𝑆 0 0 27

  28. 𝑣 ≑ βˆ’ 𝑙 π‘Ÿ 𝑆 𝜍 𝑏 𝐹 π‘Ÿ, Ξ¦, 𝑒 = 𝐹 0 𝑓 𝑗 𝑙 𝑆 βˆ’ πœ• 𝑒 𝜍 π‘’πœ 𝐾 0 βˆ’ 𝑙 π‘Ÿ 2 𝜌 ΰΆ± 𝑆 𝜍 𝑆 0 2 𝑆 𝛽 ≑ βˆ’π‘™ π‘Ÿ 𝜍 π‘’πœ = Ξ± 𝑒α 𝜍 𝑙 π‘Ÿ 𝑆 βˆ’π‘™ π‘Ÿ 𝑏 𝑆 2 = 𝐹 0 𝑓 𝑗 𝑙 𝑆 βˆ’ πœ• 𝑒 𝑆 2 𝜌 ΰΆ± Ξ± 𝑒α 𝐾 0 Ξ± 𝑆 𝑙 π‘Ÿ 0 28

  29. 𝛽 ΰΆ± 𝛽 𝐾 0 𝛽 𝑒𝛽 ≑ 𝛽 𝐾 1 𝛽 0 29

  30. βˆ’π‘™ π‘Ÿ 𝑏 𝑆 2 𝐹 π‘Ÿ, Ξ¦, 𝑒 = 𝐹 0 𝑓 𝑗 𝑙 𝑆 βˆ’ πœ• 𝑒 𝑆 2 𝜌 ΰΆ± Ξ± 𝑒α 𝐾 0 Ξ± 𝑆 𝑙 π‘Ÿ 0 2 βˆ’π‘™ 𝑏 π‘Ÿ = 𝐹 0 𝑓 𝑗 𝑙 𝑆 βˆ’ πœ• 𝑒 𝑆 βˆ’π‘™ 𝑏 π‘Ÿ 2 𝜌 𝐾 1 𝑆 𝑙 π‘Ÿ 𝑆 𝑆 𝜌 𝑏 2 2 𝐾 1 𝑙 𝑏 π‘Ÿ = 𝐹 0 𝑓 𝑗 𝑙 𝑆 βˆ’ πœ• 𝑒 𝑆 𝑙 𝑏 π‘Ÿ 𝑆 𝑆 30

  31. 2 2 𝐾 1 𝑙 𝑏 π‘Ÿ 𝐽 0 ≑ 𝐹 0 2 𝑆 2 𝑆 2 𝜌 𝑏 2 2 𝐽 π‘Ÿ, Ξ¦ = 𝐽 0 𝑙 𝑏 π‘Ÿ 𝑆 𝐽 𝐽 0 ΰ΅— 𝑙 𝑏 π‘Ÿ 𝑆 31

Recommend


More recommend