Diffraction Theory 1
2
πΉ Τ¦ π , π’ π 2 π 4 π 3 π 5 π 1 + πΉ 2 Τ¦ π , π’ + πΉ 5 Τ¦ π , π’ πΉ Τ¦ π , π’ = πΉ 1 Τ¦ π , π’ + πΉ 3 Τ¦ π , π’ + πΉ 4 Τ¦ π , π’ + β¦ = ΰ· πΉ π Τ¦ π , π’ π π 1 π π π π 1 β π π’ + π 1 + πΉ 0,2 + πΉ 0,3 + πΉ 0,4 + πΉ 0,5 πΉ 0,1 π π π π 2 β π π’ + π 2 π π π π 3 β π π’ + π 3 π π π π 4 β π π’ + π 4 πΉ Τ¦ π , π’ = π π π π 5 β π π’ + π 5 + β― π 2 π 3 π π 5 4 πΉ 0,π π π π π π βπ π’ + π π = ΰ· π π 3 π
Huygens-Fresnel Principle 4
πΉ 0,π π π π π π β π π’ + π π πΉ π, π, π’ = ΰ· π π π π π§, π¨ ΰ· ΰΆ΅ ππ§ ππ¨ π πΉ 0 π§, π¨ ππππ π’π£π π π π π π π§, π¨ β π π’ + π π§, π¨ = ΰΆ΅ ππ§ ππ¨ π π§, π¨ ππππ π’π£π π π§ π π π‘ π¨ π π‘ 2 + π β π§ 2 + π β π¨ 2 π π§, π¨ = 5
Fresnel Diffraction 1 + π β π§ 2 + π β π¨ 2 π‘ 2 + π β π§ 2 + π β π¨ 2 = π‘ 1 + π 2 π π§, π¨ = = π‘ π‘ 2 π‘ 2 π 2 β‘ π β π§ 2 + π β π¨ 2 π‘ 2 π‘ 2 = π‘ 1 + π 2 2 β π 4 8 + π 6 16 β 5 π 8 128 + β― π π‘ πππ¦ π 4 Fresnel Approximation βͺ π 8 π π§, π¨ β π‘ 1 + π 2 = π‘ 1 + π β π§ 2 + π β π¨ 2 2 π‘ 2 2 π‘ 2 2 = π‘ + π 2 + π 2 + π§ 2 + π¨ 2 β π π§ + π π¨ 2 π‘ π‘ 2 π‘ 6
π π‘ πππ¦ π 4 Fresnel Approximation βͺ π 8 π π§, π¨ β π‘ + π 2 + π 2 + π§ 2 + π¨ 2 β π π§ + π π¨ 2 π‘ π‘ 2 π‘ πΉ 0 π§, π¨ π π π π π§, π¨ β π π’ + π π§, π¨ πΉ π, π, π’ = ΰΆ΅ ππ§ ππ¨ π π§, π¨ ππππ π’π£π π π‘ + π 2 +π 2 + π§ 2 +π¨ 2 πΉ 0 π§, π¨ π π§+π π¨ π π π β β π π’ + π π§, π¨ β ΰΆ΅ ππ§ ππ¨ 2 π‘ π‘ 2 π‘ π‘ ππππ π’π£π π 7
π π‘ πππ¦ π 4 Fresnel Approximation βͺ π 8 π π§, π¨ β π‘ + π 2 + π 2 + π§ 2 + π¨ 2 β π π§ + π π¨ 2 π‘ π‘ 2 π‘ In addition to Fresnel Approximation: Fraunhofer Diffraction also known as Far-Field Diffraction π πππ¦ π§ 2 + π¨ 2 βͺ π 2 π‘ Fraunhofer Approximation πππ¦ π§ 2 + π¨ 2 βͺ 1 π π‘ 8
π 2 β‘ π‘ 2 + π 2 + π 2 π‘ 2 + π β π§ 2 + π β π¨ 2 π 2 β 2 π π§ β 2 π π¨ + π§ 2 + π¨ 2 π π§, π¨ = = 1 + β2 π π§ β 2 π π¨ + π§ 2 + π¨ 2 β π β π π§ + π π¨ = π π 2 π πΉ 0 π§, π¨ π π π π π§, π¨ β π π’ + π π§, π¨ πΉ π, π, π’ = ΰΆ΅ ππ§ ππ¨ π π§, π¨ ππππ π’π£π π π π π β π π§ + π π¨ πΉ 0 π§, π¨ β π π’ + π π§, π¨ π β ΰΆ΅ π ππ§ ππ¨ π ππππ π’π£π π = π π π π βπ π’ πΉ 0 π§, π¨ π π π π§,π¨ π β π π π π§ + π π¨ ΰΆ΅ ππ§ ππ¨ π π ππππ π’π£π π 9
Fraunhofer Diffraction π§ π 2 β‘ π‘ 2 + π 2 + π 2 π π π π‘ π¨ π πΉ π, π, π’ = π π π π βπ π’ πΉ 0 π§, π¨ π π π π§, π¨ π β π π π π§ + π π¨ ΰΆ΅ ππ§ ππ¨ π π ππππ π’π£π π 10
Illumination at the Aperture: In the examples to follow, we will consider a flat wavefront at normal incidence on the aperture Inside the aperture πΉ 0 { πΉ 0 π§, π¨ π π π π§, π¨ = Outside the aperture 0 πΉ π, π, π’ = πΉ 0 π π π π βπ π’ π β π π π π§ + π π¨ ΰΆ΅ ππ§ ππ¨ π π ππππ π’π£π π 11
Apertures considered here: 1. Single Slit 2. Double Slit 3. Rectangular Aperture 4. Circular Aperture 12
π§ 1. Single Slit π π¨ π§ π‘ππ π = π π π π π π‘ π π 2 + π‘ 2 π β‘ π π¨ π 2 + ΰ΅ πΉ π, π, π’ = πΉ 0 π π π π βπ π’ π β π π π π π§ ππ§ ΰΆ± π π 2 β ΰ΅ 13
1. Single Slit, cont. πΉ π, π, π’ = πΉ 0 π π π π β π π’ π π‘πππ π π π 2 π½ β‘ πΉ π 2 π π½ 0 β‘ πΉ 0 2 π½ π, π = π½ 0 π‘πππ 2 π π π 2 π 2 π 2 2 π π(ππ) π π π π geometrical zeros at π = 50 Β΅π = π π shadow 2 π π = 0.6 Β΅π π 1 with π = Β±1, Β±2, Β±3 π‘ = 1 π π β 1 π π = π π π π π π β1 π π½ π½ 0 π ΰ΅ π‘ππ π π = π π = π π π π 14
Mathematica 15
2. Double Slit π§ π 2 + ΰ΅ π 2 ΰ΅ π π 2 β ΰ΅ π 2 ΰ΅ π π¨ βπ 2 + ΰ΅ π 2 ΰ΅ π βπ 2 β ΰ΅ π 2 ΰ΅ 16
π§ π‘ππ π = π π π π π π‘ π π 2 + π‘ 2 π β‘ π π¨ βπ 2+ ΰ΅ π 2 π 2+ ΰ΅ π 2 ΰ΅ ΰ΅ πΉ π, π, π’ = πΉ 0 π π π π βπ π’ π β π π π π β π π π π π§ ππ§ + π π§ ππ§ ΰΆ± ΰΆ± π βπ 2β ΰ΅ π 2 π 2β ΰ΅ π 2 ΰ΅ ΰ΅ = πΉ 0 π π π π βπ π’ π π‘πππ π π π 2 πππ‘ π π π π 2 π 2 π 17
πΉ π, π, π’ = πΉ 0 π π π π βπ π’ π π‘πππ π π π 2 πππ‘ π π π π 2 π 2 π π½ π, π = 4 π½ 0 π‘πππ 2 π π π πππ‘ 2 π π π π½ 0 β‘ πΉ 0 2 2 π 2 π 2 2 π 2 π π π Mathematica 18
3. Rectangular Aperture π§ π π π¨ 19
πΉ π, π, π’ = πΉ 0 π π π π βπ π’ π β π π π π§ + π π¨ ΰΆ΅ ππ§ ππ¨ π π ππππ π’π£π π π 2 π 2 ΰ΅ ΰ΅ = πΉ 0 π π π π βπ π’ π β π π π π β π π π π π§ ππ§ π π¨ ππ¨ ΰΆ± ΰΆ± π βπ 2 βπ 2 ΰ΅ ΰ΅ = πΉ 0 π π π π βπ π’ π π‘πππ π π π π π‘πππ π π π π 2 π 2 π 20
π½ π, π = π½ 0 π‘πππ 2 π π π π‘πππ 2 π π π 2 π 2 π π½ 0 β‘ πΉ 0 2 2 π 2 π 2 π 2 π π 21
Emission of Semiconductor Laser 22
4. Circular Aperture π§ = π π‘ππ π π§ π π π π¨ π¨ = π πππ‘ π 23
Observation Plane π π π = π π‘ππ Ξ¦ Ξ¦ π π = π πππ‘ Ξ¦ 24
πΉ π, π, π’ = πΉ 0 π π π π βπ π’ π β π π π π§ + π π¨ ΰΆ΅ ππ§ ππ¨ π π ππππ π’π£π π π π§ + π π¨ = π π‘ππ Ξ¦ π π‘ππ π + π πππ‘ Ξ¦ π πππ‘ π = π π πππ‘ Ξ¦ πππ‘ π + π‘ππ Ξ¦ π‘ππ π = π π πππ‘ π β Ξ¦ ππ§ ππ¨ = π ππ ππ π 2π πΉ π, Ξ¦, π’ = πΉ 0 π π π π βπ π’ ππ π β π π π π πππ‘ π β Ξ¦ ΰΆ± π ππ ΰΆ± π π 0 0 Due to axial symmetry, we can choose: Ξ¦ = 0 25
A couple of integrals to solve: π 2π πΉ π, Ξ¦, π’ = πΉ 0 π π π π βπ π’ ππ π β π π π π πππ‘ π ΰΆ± π ππ ΰΆ± π π 0 0 26
2π 1 ππ π π π£ πππ‘ π β‘ πΎ 0 π£ Bessel function 2 π ΰΆ± of order zero 0 π 2π πΉ π, Ξ¦, π’ = πΉ 0 π π π π βπ π’ ππ π β π π π π πππ‘ π ΰΆ± π ππ ΰΆ± π π 0 0 27
π£ β‘ β π π π π π πΉ π, Ξ¦, π’ = πΉ 0 π π π π β π π’ π ππ πΎ 0 β π π 2 π ΰΆ± π π π 0 2 π π½ β‘ βπ π π ππ = Ξ± πΞ± π π π π βπ π π π 2 = πΉ 0 π π π π β π π’ π 2 π ΰΆ± Ξ± πΞ± πΎ 0 Ξ± π π π 0 28
π½ ΰΆ± π½ πΎ 0 π½ ππ½ β‘ π½ πΎ 1 π½ 0 29
βπ π π π 2 πΉ π, Ξ¦, π’ = πΉ 0 π π π π β π π’ π 2 π ΰΆ± Ξ± πΞ± πΎ 0 Ξ± π π π 0 2 βπ π π = πΉ 0 π π π π β π π’ π βπ π π 2 π πΎ 1 π π π π π π π 2 2 πΎ 1 π π π = πΉ 0 π π π π β π π’ π π π π π π 30
2 2 πΎ 1 π π π π½ 0 β‘ πΉ 0 2 π 2 π 2 π π 2 2 π½ π, Ξ¦ = π½ 0 π π π π π½ π½ 0 ΰ΅ π π π π 31
Recommend
More recommend