development of the elmb development of the elmb
play

Development of the ELMB Development of the ELMB Henk Boterenbrood - PowerPoint PPT Presentation

Development of the ELMB Development of the ELMB Henk Boterenbrood LECC2003, Sep 29 - Oct 03 ELMB: Embedded Local Monitor Board Credit-card sized plug-on board programmable: microcontroller (8-bit, 4MHz) communication: CAN-interface


  1. Development of the ELMB Development of the ELMB Henk Boterenbrood LECC2003, Sep 29 - Oct 03

  2. ELMB: Embedded Local Monitor Board � Credit-card sized plug-on board � programmable: microcontroller (8-bit, 4MHz) � communication: CAN-interface � I/O � digital I/O � 64-channel 16-bit ADC (optional), max 30 samples/s � firmware remotely upgradeable � General-purpose CAN-bus based standard building block for various control and monitoring tasks in the LHC experiments (initially for ATLAS) 2 LECC2003, Sep 29 - Oct 03 Boterenbrood & Hallgren

  3. Why develop the ELMB ? � Reduce design effort (hardware, software) by individual institutes � Simplify spares and maintenance issues (15 years) � Common solution for interfacing custom designs in a ‘standard’ way to the Detector Control System (DCS) � hardware and software ( CANopen protocol on the CAN-bus) � No commercial solution to meet all requirements: � low power � low cost � high I/O density (connect many channels to one module) � In-Application-Programmable (i.e. ‘on-detector’, via CAN-bus) � not sensitive to magnetic field � radiation tolerant 3 LECC2003, Sep 29 - Oct 03 Boterenbrood & Hallgren

  4. Outline � ELMB status � ELMB overview � Some example applications � Radiation tests 4 LECC2003, Sep 29 - Oct 03 Boterenbrood & Hallgren

  5. ELMB: Status � After a few prototypes… � LMB ca. 40 produced � ELMB103 (with ATmega103 microcontroller) ca. 300 produced � Final design: ELMB128 (with ATmega128 microcontroller) � cheaper and more rad tolerant � ELMB128A : with analog part � ELMB128D : without analog part � Pre-series of 650 ELMB128 produced, end of 2002 � Final production of 9000 pieces in preparation � ATLAS: 5800 � LHC Rack & Gas Systems: 1800 � Other LHC experiments: 1400 5 LECC2003, Sep 29 - Oct 03 Boterenbrood & Hallgren

  6. ELMB128: Block Diagram VCP, VCG VAP, VAG VDP, VDG 6 to 12V, 20 mA 5.5 to 12V, 10 mA 3.5 V - 12V, 15 mA ANALOG GND DIGITAL GND DIGITAL GND CAN GND ANALOG GND CAN GND Voltage Voltage Voltage +5V ± 5V +3.3V Regulator Regulators Regulator 64 chan ATmega128L 4 Analog In SAE81C91 82C250 MUX + microcontroller OPTO OPTO …. CAN CAN controller CS5523 • 128k Flash …. Trans- • 4k RAM …. 16-bit OPTO ceiver OPTO • 4k EEPROM ADC • Bootloader DIP switches section 32 CAN bus 4 3 Dig I/O ISP, cable Digital I/O (SPI) USART 6 LECC2003, Sep 29 - Oct 03 Boterenbrood & Hallgren

  7. ELMB: ELMB103 vs. ELMB128 ELMB103 ELMB128 Brown-Out-Detection (BOD) circuit removed voltage regulator removed (for external use) microcontroller upgraded (self-programming, internal BOD) RTC crystal removed 2 nd microcontroller no longer needed jumpers obsolete ca. 40 mA ca. 55 mA current consumption (no activity) 7 LECC2003, Sep 29 - Oct 03 Boterenbrood & Hallgren

  8. ELMB128: Microcontroller � ATMEL ATmega128L, 3.3V � single clock cycle instructions (ELMB: 4 MHz) � 128k In-System-Programmable Flash (1000x write/erase) � 4k SRAM � 4k EEPROM (100,000x write/erase) � optional Boot Code section (2, 4 or 8 k) � In-System-Programming by on-chip Bootloader program � 4 timers � on-chip 10 bit 8-chan ADC � … … 8 LECC2003, Sep 29 - Oct 03 Boterenbrood & Hallgren

  9. ELMB128A: the board CAN-controller analog multiplexors opto-couplers CAN-transceiver on ELMB128D: backside empty… and frontside only 2 instead of 5 opto-ICs ADC motherboard connectors DIP-switches ISP/USART connector microcontroller 9 LECC2003, Sep 29 - Oct 03 Boterenbrood & Hallgren

  10. ELMB: Embedded… CANopen Temperature Connection ELMB (analog in) Magnetic Field to Detector Voltages, Currents Control Thresholds (analog out) System Application-Specific CAN ON/OFF monitor (digital in) Motherboard… with possibly ON/OFF (digital out) signal-conditioning I2C e.g. for Frontend circuitry, Electronics Configuration JTAG opto-isolation, ADCs, DACs, ……… EEPROM/flash, … or ELMB integrated in system connectors, etc… to monitor and control 10 LECC2003, Sep 29 - Oct 03 Boterenbrood & Hallgren

  11. ELMB: general-purpose Motherboard Digital I/O (ca. 300 produced) ELMB with general-purpose CANopen application firmware and Bootloader ( off production ) power CAN analog in analog in (+power) (2x16 ch) (2x16 ch) analog input signal adapters (available for PT100, NTC and voltages) 11 LECC2003, Sep 29 - Oct 03 Boterenbrood & Hallgren

  12. ELMB Application Example: Muon MDT NTC Temperature Sensors MDT-DCS module (10 to 20 per chamber, 30 max) ADC MDT Front-end Electronics (CSM) 16-bit SPI CAN CAN 5 4 CSM-ADC Analog inputs micro ADC JTAG (V, I, T, etc. 16-bit 64 channels) ELMB SPI- 3 AUX 5 7 DIG-I/O MDT/ various functions (tbd) 4 ATLAS n.c. DIG-I/O B-sensor 1 B-sensor 2 DCS 4 Magnetic JTAG: electronics configuration ADC ADC ID ID Field 24-bit 24-bit Sensors B x ,B y ,B z ,T B x ,B y ,B z ,T MDT Chamber (ca. 600 chambers equipped with (ca. 1200x) two B-sensor modules each) 12 LECC2003, Sep 29 - Oct 03 Boterenbrood & Hallgren

  13. ELMB Application Example: Muon MDT 13 LECC2003, Sep 29 - Oct 03 Boterenbrood & Hallgren

  14. ELMB Application Example: Muon RPC ELMB ELMB controls: � Temp sensors � TTC � Delay chips � FPGA � Flash prom FPGA � Flash prom SPI � I 2 C I/O registers � Coincidence matrix ASIC (about 200 I 2 C registers) � Optical link controls using JTAG and I 2 C protocols and Dig I/O (courtesy of S.Veneziano) PAD board with TTCrx, ELMB, XCV200 and Optical Link 14 LECC2003, Sep 29 - Oct 03 Boterenbrood & Hallgren

  15. ELMB Application Example: LHCb Muon 24A00 ELMB0 ELMB3 ELMB1 ELMB2 S/N Vers. 1010XXX SPI SPI SPI SPI pwr_ctrl pwr_ctrl pwr_ctrl pwr_ctrl (courtesy of V.Bocci) 4 MBit 4 MBit 4 MBit 4 MBit Flash Flash Flash Flash I2C_local_bus I2C I/O REG 0x21 I2C reset lines I/O REG 12 0x20 ELMB Actel 12 Test_pulse signals FPGA Service Board Module 0x72 (for frontend electronics: configuration, etc) 15 LECC2003, Sep 29 - Oct 03 Boterenbrood & Hallgren

  16. ELMB Radiation Tests � Radiation values guideline (calculated for ATLAS Muon Barrel) � TID: 4.7 Gy x 3.5 x 1 x 2 = 33 Gy = 3.3 kRad in 10 years x 5 x 1 x 2 = 3.0*10 11 n/cm 2 (1 MeV eq.) in 10 years NIEL: 3.0E10 n/cm 2 � x 5 x 1 x 2 = 5.4*10 10 h/cm 2 (>20 MeV) in 10 years SEE: 5.4E09 h/cm 2 � safety factor COTS mixed: factor 4, for simulated Low Dose Rate effect, COTS homogeneous in preselection: factor 2 rad levels factor 5: for COTS in COTS homogeneous in production: factor 1 non-homogeneous batches � NIEL (Non-Ionising Energy Loss) � reactor at ITN, Portugal, Feb 2003 � 3 ELMB128s unpowered, 2.0*10 12 n/cm 2 : OKAY � 3 ELMB128s unpowered, 8.0*10 12 n/cm 2 : had to replace two voltage regulators per ELMB, then OKAY � opto-couplers degraded: make sure to have margins in signal timing (by software) 16 LECC2003, Sep 29 - Oct 03 Boterenbrood & Hallgren

  17. ELMB Radiation Test: SEE / TID � CRC cyclotron, Louvain-la-Neuve (B), March 2003 (previous test with ELMB103 in 2001) � 12 ELMB128s, each irradiated with at least 1.0*10 11 p/cm 2 corresponding to TID = 140 Gy � Total fluence: 1.3*10 12 p/cm 2 (2001: fluence: 0.33*10 12 p/cm 2 ) � ELMBs powered, running � ‘standard’ firmware (doing ADC and digital I/O, CAN-bus message handling) � additional periodic (every 5 s) checking of unused parts of memory and device registers, filled with bit patterns 17 LECC2003, Sep 29 - Oct 03 Boterenbrood & Hallgren

  18. RadTest: TID (Total Ionising Dose) • Currents of Digital and CAN sections of ELMB128 were not affected • Reprogramming of Flash memory fails (needs further tests: when does it fail!) A013 A015 A017 A021 ELMB128 ANALOG CURRENT A022 A024 A062 A097 A481 A482 A483 A484 60 50 40 Current (mA) 30 20 10 0 0 25 50 75 100 125 150 175 200 225 250 275 TID (Gy) 18 LECC2003, Sep 29 - Oct 03 Boterenbrood & Hallgren

  19. RadTest: Systematic SEE in SRAM SEE in 2048 bytes of SRAM 2500 ELMB103 "old" ELMB 0.5 µm technology 2000 ELMB128 ELMB128 Total number of SEE 0.35 µm technology Slope: 3.6E-12 SEEs per 1500 byte and proton/cm 2 1000 Slope: 5.4E-13 SEEs per byte and proton/cm 2 500 0 0.0E+00 2.0E+11 4.0E+11 6.0E+11 8.0E+11 1.0E+12 1.2E+12 1.4E+12 Number of protons/cm 2 19 LECC2003, Sep 29 - Oct 03 Boterenbrood & Hallgren

  20. RadTest: SEE results � no hard or destructive SEE found � Systematic SEEs � count the errors found in bit patterns (corrected for total fluence ( 1.3*10 12 p/cm 2 ) and number of bytes in test) : SRAM EEPROM FLASH CAN ADC MEGA CRC ELMB103 7733 0 0 61 73 -- 0 ELMB128 1233 0 0 27 2 0 0 microcontroller different technology(?) in 0.35 µ m technology 0.50 µ m technology 20 LECC2003, Sep 29 - Oct 03 Boterenbrood & Hallgren

  21. RadTest: SEE results � Functional SEEs � count ‘abnormal’ behaviour, and categorize according to necessary action to fix it ELMB103 ELMB128 Power cycling 15 0 Software reset 19 1 Automatic recovery 78 13 (corrected for total fluence of 1.3*10 12 p/cm 2 ) 21 LECC2003, Sep 29 - Oct 03 Boterenbrood & Hallgren

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend