determination of the extragalactic background light
play

Determination of the extragalactic background light spectral energy - PowerPoint PPT Presentation

Determination of the extragalactic background light spectral energy distribution with H.E.S.S. Fabian Schssler, Matthias Lorentz, Pierre Brun (Irfu CEA Saclay) David Sanchez (LAPP, CNRS/IN2P3) for the H.E.S.S. Collaboration TeVPA 2015


  1. Determination of the extragalactic background light spectral energy distribution with H.E.S.S. Fabian Schüssler, Matthias Lorentz, Pierre Brun (Irfu – CEA Saclay) David Sanchez (LAPP, CNRS/IN2P3) for the H.E.S.S. Collaboration TeVPA 2015

  2. Extragalactic background light and γ -ray absorption § What is the EBL ? Background photon field (IR to UV) originating from starlight and dust re-emission. Direct measurements are difficult ? ¡ § EBL absorbs γ rays by pair creation Universe not transparent to γ rays over extragalactic Courtesy ¡of ¡H. ¡Dole ¡ distances : optical depth τ Attenuation pattern in VHE spectra of distant sources Z z s Z 2 Z ∞ d ✏ dn EBL ( ✏ , z ) dz dt dµµ ⌧ ( E � , z s ) = c � �� ( E � (1 + z ) , ✏ , µ ) 2 dz d ✏ 0 0 ✏ thr Flux ¡ intrinsic ¡ Φ obs ( E γ ) = Φ int ( E γ ) e − τ ( E γ ,z s ) EBL ¡ absorbed ¡ Energy ¡ ~ ¡TeV ¡ Determination of the EBL SED with H.E.S.S. | TeVPA 2015 2 ¡

  3. High Energy Stereoscopic System Khomas ¡Highland, ¡Namibia ¡ § H.E.S.S. phase I : § H.E.S.S. phase II : § 4 telescopes with a 107 m 2 dish § Additional 5 th telescope, 600 m 2 § Cameras with 960 PMTs § Camera with 2048 PMTs § Field of view 5° § Field of view 3.5° § Energy range : 100 GeV to 50 TeV § Energy threshold lowered to ~30 GeV (~10% resolution) See numerous H.E.S.S. contributions at this conference … Determination of the EBL SED with H.E.S.S. | TeVPA 2015 3 ¡

  4. Previous EBL study with H.E.S.S. H.E.S.S. ¡collabora,on ¡(2013), ¡A&A, ¡550, ¡A4 ¡ § Model dependent approach : model of Francheschini et al. 2008 (FR08) § Fixed shape , normalization only § α = 0 : no EBL § α = 1 : EBL normalized to FR08 § EBL detection at 8.8 σ : -0.15 (stat) +/- 0.25 (syst ) α = 1.27 +0.18 § Now, different approach : Can we also determine the shape of the EBL with H.E.S.S. in a model independent way ? Determination of the EBL SED with H.E.S.S. | TeVPA 2015 4 ¡

  5. Spectra : the essential ingredient Φ obs ( E γ ) = Φ int ( E γ ) e − τ ( E γ ,z s ) EBL Measured Hypotheses information needed Example observed spectrum for one data set § Difficulty : disentangle EBL effect and intrinsic curvature § Simple assumptions on intrinsic redshiF ¡ blazar spectra fitted : EBL ¡ dN Power law : dE ∝ E − α dN Intrinsic ¡ dE ∝ E − α − β log( E ) Log parabola : spectrum ¡ Determination of the EBL SED with H.E.S.S. | TeVPA 2015 5 ¡

  6. EBL shape : from splines to envelopes Grid scan : H.E.S.S. spectrum Fit intrinsic + EBL absorption with every shape on the grid Envelope ( χ 2 min +1) Best Fit around best fit spline EBL spline 1 ¡σ ¡contour ¡ Example spectrum and fit Combine all data sets Best ¡fit ¡spline ¡and ¡ ¡all ¡splines ¡inside ¡ ¡( χ 2 min +1) ¡interval ¡ Determination of the EBL SED with H.E.S.S. | TeVPA 2015 6 ¡

  7. A grid to test local EBL shapes § Local (z=0) EBL shapes as splines inside a grid Similar model independent approaches : Mazin & Raue (2007) A&A 471(2), 439-452. § Two grids shifted against each other to Meyer et al. (2012) A&A, 542, A59. reduce constraints on shapes Biteau & Williams (2015), arXiv:1502.04166 Φ obs ( E γ ) = Φ int ( E γ ) e − τ i ( E γ ,z s ) OpHcal ¡depth ¡computed ¡for ¡ every ¡shape ¡on ¡the ¡grid ¡ § i = 0 … 116,640 : # of spline tested § Large variety of EBL shapes allowed § τ also depends on EBL evolution : evolution hypotheses needed § Evolution function extracted from FR08 No significant impact on results compared to simple effective scaling Determination of the EBL SED with H.E.S.S. | TeVPA 2015 7 ¡

  8. Data sample : high significance H.E.S.S. blazars § Cut on significance >10 σ detection with H.E.S.S. § 14 data sets with 6 sources (for now !) O n l y H . E . S . S p . h a § Redshift coverage : z from 0.071 to 0.188 s e - I d a t a u s e d h e r e 1ES ¡1101-­‑232 ¡ 1ES ¡0229+200 ¡ 1ES ¡0347-­‑121 ¡ PKS ¡2155-­‑304 ¡ PKS ¡2005-­‑489 ¡ ¡(8 ¡subsets) ¡ H ¡2356-­‑309 ¡ (2 ¡subsets) ¡ tevcat.uchicago.edu ¡ Determination of the EBL SED with H.E.S.S. | TeVPA 2015 8 ¡

  9. Preliminary results § The shape of the EBL is accessible § Grey area : combined statistical contour with no assumptions on shape and normalization ! § Systematics : largest contour including x-check analysis + relative exclusion of several data sets Determination of the EBL SED with H.E.S.S. | TeVPA 2015 9 ¡

  10. Summary and perspectives § This study : a 1 st model-independent comprehensive study of the EBL with H.E.S.S. Final study includes : § More sources : § Stronger collective signal § Better redshift coverage § H.E.S.S. II data : § More leverage on short wavelength range § Better assessment of systematics errors § Adaptive grids : from coarse to fine § Other intrinsic spectral shapes assumptions § Influence of EBL evolution § Related study on intrinsic spectra of blazars Coming ¡soon… ¡ H.E.S.S. ¡looking ¡at ¡PKS ¡2155-­‑304 ¡ Determination of the EBL SED with H.E.S.S. | TeVPA 2015 10 ¡

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend