detector challenges in photon science
play

Detector Challenges in Photon Science. Heinz Graafsma - PowerPoint PPT Presentation

Detector Challenges in Photon Science. Heinz Graafsma DESY-Hamburg; Germany & University of Mid-Sweden Outline > Photon Science and the detector challenge > Synchrotron storage rings The LAMBDA system > X-ray Free Electron


  1. Detector Challenges in Photon Science. Heinz Graafsma DESY-Hamburg; Germany & University of Mid-Sweden

  2. Outline > Photon Science and the detector challenge > Synchrotron storage rings § The LAMBDA system > X-ray Free Electron Lasers § The DSSC system § The AGIPD system > XUV Free Electron Lasers § The PERCIVAL system > Future directions Heinz Graafsma | Page 2

  3. From fundamental to applied science Study of extremely charged ions Structure of viruses Authentication of paintings Heinz Graafsma | Page 3

  4. Photon-Science at large scale X-ray facilities PETRA III FLASH I + II European XFEL Heinz Graafsma | Page 4

  5. The Detector Challenge: FEL Sources PETRA-3 2 1 2 1 ESRF (2000) 2 1 brilliance 2 1 ESRF (1994) 1 1 1 1 Storage Ring Sources 1 1 1 1 Second generation 1 1 1 1 First generation 1 1 1 1 1 1 1 1 X-ray tubes 9 1 8 1 7 1 6 1 1900 1960 1980 2000 Heinz Graafsma | Page 7

  6. Outline > Photon Science and the detector challenge > Synchrotron storage rings § The LAMBDA system > X-ray Free Electron Lasers § The DSSC system § The AGIPD system > XUV Free Electron Lasers § The PERCIVAL system > Future directions Heinz Graafsma | Page 8

  7. Storage Ring Sources: general observations PETRA III • Pulsed X-ray source • ~ Giga Hz rep-rate • Treated as a continuous, random source • Main photon range: 5-30 keV • Few stations <1 keV • Few stations > 100 keV • 30 large synchrotrons world-wide • ~ 800 end-stations Heinz Graafsma | Page 9

  8. Hybrid Pixel Array Detectors (HPADs) Pixelated Particle Particle / X-ray Sensor Amplifier & Readout Chip Q signal CMOS Connection wire pads Power Power Inputs Indium Solder Outputs Clock Inputs Bumpbonds Data Outputs Particle / X-ray � Signal Charge � Electr. Amplifier � Readout � Digital Data Heinz Graafsma | Page 10

  9. Medipix-3: Communicating pixels 55 µ Heinz Graafsma | Page 13

  10. Medipix-3: Communicating pixels The winner takes all principle √ • The incoming quantum is assigned as a single hit 55 µ Heinz Graafsma | Page 14

  11. Communicating pixels Ł better energy resolution Heinz Graafsma | Page 15

  12. Medipix3 readout chip > Collaboration of ~20 groups led by CERN > Flexible pixel design § 2 counters and thresholds per 55µm pixel, plus interpixel communication > Applications: § Fast, deadtime-free frame readout • 2000 fps @ 12 bit depth § Energy binning with charge summing § Pump / probe… Heinz Graafsma | Page 16

  13. Large Area Medipix3 Based Detector Array (LAMBDA) Heinz Graafsma | Page 19

  14. High-Z pixel detectors > Aim: Increase efficiency at 50 keV by factor of 10 § Replace silicon sensor in LAMBDA with high-Z semiconductor § Combine high QE with hard X-rays, high frame rate, high signal-to-noise > Investigating different materials in collaboration with other institutes and industry § Cadmium telluride § Gallium arsenide § Germanium Heinz Graafsma | Page 22

  15. High-Z sensors > CdTe, GaAs and Ge can be used for experiments > Each material has strengths and weaknesses § CdTe – most well-established, still some problems with uniformity and stability § GaAs – widespread but correctable non-uniformity – very limited supply § Germanium technology now works – but high cooling power for large systems CdTe GaAs Ge Heinz Graafsma | Page 23

  16. Outline > Photon Science and the detector challenge > Synchrotron storage rings § The LAMBDA system > X-ray Free Electron Lasers § The DSSC system § The AGIPD system > XUV Free Electron Lasers § The PERCIVAL system > Future directions Heinz Graafsma | Page 25

  17. The European X-ray Free Electron Laser • 17.5 GeV linear electron accelerator (3.4 km) • producing 5-25 keV x-rays (tunable) through FEL process • unprecedented peak brilliance DESY • user facility: common infrastructure shared by many experiments Switch Building (Osdorfer Born) Experimental Hall (Schenefeld) Heinz Graafsma | Page 26

  18. The XFEL-Challenge: Different Science • Completely new science x10 9 • Fast science 100 fsec • “Single shot” science Heinz Graafsma | Page 27

  19. The Holy Grail ? K. J. Gaffney and H. N. Chapman, Science Heinz Graafsma | Page 28 8 June 2007

  20. European XFEL Linac: Time Structure Challenge Elect r on bunch t r ains; up t o 2700 bunches in 600 µ sec, r epeat ed 10 t imes per second. Pr oducing 100 f sec X-r ay pulses (up t o 27 000 bunches per second). 100 ms 100 ms 27 000 bunches/ s 600 µ s with 99.4 ms 4. 5 MHz repitition rate 220 ns av. Rate: 27kHz XFEL FEL 120Hz LCLS process X- ray photons 60Hz SCSS <100 f s Heinz Graafsma | Page 29

  21. What are the challenges ? 4.5 MHz Heinz Graafsma | Page 30

  22. How to meet the challenge ? Three dedicated Projects: • Depfet Sensor with Signal Compression Non-linear gain, digital storage Adaptive Gain Integrating Pixel Detector • Automatic adaptive gain, analogue storage • Large Pixel Detector Three parallel gains, analogue storage Heinz Graafsma | Page 31

  23. DSSC - DEPMOS Sensor with Signal Compression > DEPFET per pixel > Very low noise (good for soft X-rays) > non linear gain (good for dynamic range) > per pixel ADC > digital storage pipeline > Hexagonal pixels 200 µ m pitch > MPI-HLL, Munich > Universität Heidelberg > Universität Siegen • combines DEPFET > Politecnico di Milano • with small area drift detector > Universit à di Bergamo (scaleable) > DESY, Hamburg Heinz Graafsma | Page 32

  24. DSSC - DEPFET Sensor with Signal Compression DEPFET : Electrons are collected in a storage well ⇒ Influence current from source to drain gate drain source Storage well Fully depleted silicon e - Output voltage as function of charge injected charge injected charge Heinz Graafsma | Page 33

  25. The Adaptive Gain Integrating Pixel Detector (AGIPD)

  26. Adaptive Gain principle High dynamic range: Dynamically gain switching system Extremely fast readout (200ns): 1,8 Analogue pipeline storage C3 Control logic Analogue encoding 1,6 C2 1,4 Normal Charge C1 1,2 Output Voltage [V] sensitive amplifier V thr ≅ V ADCmax 1,0 Discr. Trim DAC 0,8 Leakage comp. 0,6 0,4 0,2 Cf=100fF Cf=1500fF Cf=4800fF 0,0 0 5000 10000 15000 Number of 12.4 KeV - Photons Heinz Graafsma | Page 37

  27. AGIPD readout principle Electronics per pixel Sensor Pixel matrix Read Out bus … HV Analog Mem CDS SW + RO Amp DAC Analog Mem - CTRL … THR Calibration circuitry Mux Chip ASIC Adaptive gain amplifier output periphery 352 analog memory cells driver Heinz Graafsma | Page 38

  28. AGIPD Pixel Electronics • 200 x 200 micron 2 pixels • 352 storage cells + veto possibilities. • M inumum signal ~ 300 e - = 0.1 photon of 12.4keV • M aximum signal ~ 33 10 6 e - = 10 4 photons of 12.4keV • 4.5 M Hz frame rate • 64 x 64 pixels per ASIC • 2 x 8 ASICs per module (128x512 pixels, no dead area) • 4 modules per quadrant Heinz Graafsma | Page 39

  29. AGIPD modules Special Radiation hard design Special design to minimize dead area AGIPD 1.0 Heinz Graafsma | Page 45

  30. A 1M pixel camera with a variable hole • Protruding out of detector vessel to minimize sample to detector distance • Independently movable quadrants • Angled electronics to minimize footprint along beam axis Heinz Graafsma | Page 46

  31. The Real thing Heinz Graafsma | Page 47

  32. Experiments: AGIPD module @APS Single bunch imaging – a challenge to find processes fast enough Experimental setup ● Drilled equidistant holes into a DVD ● DVD covered with zinc paint to increase absorption ● Mounted DVD on a fast electric motor ● Measurement of hole to hole frequency ● with diode and oscilloscope: 1.208kHz Heinz Graafsma | Page 48

  33. Experiments: AGIPD module @APS Calculation for burst imaging Result from laser measurement • APS bunch spacing: t = 154ns • Number of pixels crossed during burst of 352 images: ~ 8 • Pixel size: 200µm Vdisc, AGIPD = Vdisc, Laser = ͌ 29.51m/s 29.83m/s Single bunch imaging is possible even at a repetition rate of 6.5MHz!! Heinz Graafsma | Page 49

  34. Outline > Photon Science and the detector challenge > Synchrotron storage rings § The LAMBDA system > X-ray Free Electron Lasers § The DSSC system § The AGIPD system > XUV Free Electron Lasers § The PERCIVAL system > Future directions Heinz Graafsma | Page 50

  35. (Pixelated Energy Resolving CMOS Imager, Versatile And Large) Soft X-ray imaging MAPS for (X)FELs and synchrotrons

  36. P ERCIVAL in a nutshell > Aim: develop X-ray imager for FELs’ and Storage Rings > 250eV-1keV, 2Mpixel & 13Mpixel, 27 micron pixels, 120Hz frame rate, 1-10 5 photons/pixel. Fully functional below 250 eV and above 1 keV. > Partners: DESY, RAL/STFC, Elettra, Diamond (DLS) & Pohang Light Source (PAL) § Sensor developed at RAL, § System developed DESY, Elettra, DLS and PAL § Only digital information coming off the chip § Readout development build upon / re-use XFEL and AGIPD developments > Project timeline § TS1.2 to be tested this summer § First full 2M system 2016 Heinz Graafsma | Page 52

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend