desynchronisation of coupled bistable oscillators
play

Desynchronisation of coupled bistable oscillators perturbed by - PowerPoint PPT Presentation

Numerics and Theory for Stochastic Evolution Equations University of Bielefeld, 2224 November 2006 Barbara Gentz, University of Bielefeld http://www.math.uni-bielefeld.de/ gentz Desynchronisation of coupled bistable oscillators perturbed


  1. Numerics and Theory for Stochastic Evolution Equations University of Bielefeld, 22–24 November 2006 Barbara Gentz, University of Bielefeld http://www.math.uni-bielefeld.de/ ˜ gentz Desynchronisation of coupled bistable oscillators perturbed by additive white noise Joint work with Nils Berglund & Bastien Fernandez, CPT, Marseille

  2. Metastability in stochastic lattice models ⊲ Lattice: Λ ⊂ Z d ⊲ Configuration space: X = S Λ , S finite set (e.g. {− 1 , 1 } ) ⊲ Hamiltonian: H : X → R (e.g. Ising model or lattice gas) ⊲ Gibbs measure: µ β ( x ) = e − βH ( x ) /Z β ⊲ Dynamics: Markov chain with invariant measure µ β (e.g. Metropolis such as Glauber or Kawasaki dynamics) 1

  3. Metastability in stochastic lattice models ⊲ Lattice: Λ ⊂ Z d ⊲ Configuration space: X = S Λ , S finite set (e.g. {− 1 , 1 } ) ⊲ Hamiltonian: H : X → R (e.g. Ising model or lattice gas) ⊲ Gibbs measure: µ β ( x ) = e − βH ( x ) /Z β ⊲ Dynamics: Markov chain with invariant measure µ β (e.g. Metropolis such as Glauber or Kawasaki dynamics) Results (for β ≫ 1) on ⊲ Transition time between empty and full configuration ⊲ Transition path ⊲ Shape of critical droplet ⊲ Frank den Hollander, Metastability under stochastic dynamics , Stochastic Process. Appl. 114 (2004), 1–26 ⊲ Enzo Olivieri and Maria Eul´ alia Vares, Large deviations and metastability , Cambridge University Press, Cambridge, 2005 1-a

  4. Metastability in reversible diffusions dx σ ( t ) = −∇ V ( x σ ( t )) dt + σ dB ( t ) ⊲ V : R d → R : potential, growing at infinity ⊲ B ( t ): d -dimensional Brownian motion Invariant measure: µ σ ( dx ) = e − 2 V ( x ) /σ 2 dx Z σ 2

  5. Metastability in reversible diffusions dx σ ( t ) = −∇ V ( x σ ( t )) dt + σ dB ( t ) ⊲ V : R d → R : potential, growing at infinity ⊲ B ( t ): d -dimensional Brownian motion Invariant measure: µ σ ( dx ) = e − 2 V ( x ) /σ 2 dx Z σ 2-a

  6. Metastability in reversible diffusions dx σ ( t ) = −∇ V ( x σ ( t )) dt + σ dB ( t ) ⊲ V : R d → R : potential, growing at infinity ⊲ B ( t ): d -dimensional Brownian motion Invariant measure: Mont Col de la Gineste µ σ ( dx ) = e − 2 V ( x ) /σ 2 Puget dx Z σ Luminy Cassis 2-b

  7. Metastability in reversible diffusions dx σ ( t ) = −∇ V ( x σ ( t )) dt + σ dB ( t ) ⊲ V : R d → R : potential, growing at infinity ⊲ B ( t ): d -dimensional Brownian motion Invariant measure: Mont Col de la Gineste µ σ ( dx ) = e − 2 V ( x ) /σ 2 Puget dx Z σ Luminy Cassis Transition time τ between potential wells (first-hitting time): ⊲ Large deviations (Wentzell & Freidlin): lim σ → 0 σ 2 log E τ ⊲ Subexponential asymptotics (Bovier, Eckhoff, Gayrard, Klein; Helffer, Nier, Klein) 2-c

  8. Metastability in reversible diffusions ⊲ Stationary points: S = { x : ∇ V ( x ) = 0 } ⊲ Saddles of index k ∈ N 0 : S k = { x ∈ S : Hess V ( x ) has k negative eigenvalues } Graph G = ( S 0 , E ): x ↔ y x, y belong to unstable manifold of some s ∈ S 1 iff x σ ( t ) resembles Markovian jump process on G Mont Col de la Gineste Puget Luminy Cassis 3

  9. Metastability in reversible diffusions ⊲ Stationary points: S = { x : ∇ V ( x ) = 0 } ⊲ Saddles of index k ∈ N 0 : S k = { x ∈ S : Hess V ( x ) has k negative eigenvalues } ⊲ (Multi-)Graph G = ( S 0 , E ): x ↔ y x, y belong to unstable manifold of some s ∈ S 1 iff ⊲ x σ ( t ) resembles Markovian jump process on G Col de la Gineste Mont Col de la Gineste Puget Mont Puget Luminy Cassis Luminy Cassis 3-a

  10. The model ⊲ Lattice: Λ = Z /N Z , N � 2 dx i ( t ) = Interacting diffusions (Dawson, G¨ artner, Deuschel, Cox, Greven, Shiga, Klenke, Fleischmann; M´ el´ eard; Kondratiev, R¨ ockner, Carmona, Xu; . . . ) √ Gradient system: dx σ ( t ) = −∇ V γ ( x σ ( t )) dt + σ N dB ( t ) � � U ( x i ) + γ ( x i +1 − x i ) 2 Global potential: V γ ( x ) = 4 i ∈ Λ i ∈ Λ 4

  11. The model ⊲ Lattice: Λ = Z /N Z , N � 2 ⊲ Position x i of i th particle: Λ ∋ i �→ x i ∈ R ⊲ Configuration space: X = R Λ dx i ( t ) = Interacting diffusions (Dawson, G¨ artner, Deuschel, Cox, Greven, Shiga, Klenke, Fleischmann; M´ el´ eard; Kondratiev, R¨ ockner, Carmona, Xu; . . . ) √ Gradient system: dx σ ( t ) = −∇ V γ ( x σ ( t )) dt + σ N dB ( t ) � � U ( x i ) + γ ( x i +1 − x i ) 2 Global potential: V γ ( x ) = 4 i ∈ Λ i ∈ Λ 4-a

  12. The model ⊲ Lattice: Λ = Z /N Z , N � 2 ⊲ Position x i of i th particle: Λ ∋ i �→ x i ∈ R ⊲ Configuration space: X = R Λ 4 x 4 − 1 ⊲ Bistable local potential: U ( x ) = 1 2 x 2 ⊲ Nonlinear local drift term: f ( x ) = − U ′ ( x ) = x − x 3 dx i ( t ) = f ( x i ( t )) dt Interacting diffusions (Dawson, G¨ artner, Deuschel, Cox, Greven, Shiga, Klenke, Fleischmann; M´ el´ eard; Kondratiev, R¨ ockner, Carmona, Xu; . . . ) √ Gradient system: dx σ ( t ) = −∇ V γ ( x σ ( t )) dt + σ N dB ( t ) � � U ( x i ) + γ ( x i +1 − x i ) 2 Global potential: V γ ( x ) = 4 i ∈ Λ i ∈ Λ 4-b

  13. The model ⊲ Lattice: Λ = Z /N Z , N � 2 ⊲ Position x i of i th particle: Λ ∋ i �→ x i ∈ R ⊲ Configuration space: X = R Λ 4 x 4 − 1 ⊲ Bistable local potential: U ( x ) = 1 2 x 2 ⊲ Nonlinear local drift term: f ( x ) = − U ′ ( x ) = x − x 3 ⊲ Coupling between sites: discretised Laplacian ⊲ Coupling strength γ ≥ 0 � � dx i ( t ) = f ( x i ( t )) dt + γ x i +1 ( t ) − 2 x i ( t ) + x i − 1 ( t ) dt 2 Interacting diffusions (Dawson, G¨ artner, Deuschel, Cox, Greven, Shiga, Klenke, Fleischmann; M´ el´ eard; Kondratiev, R¨ ockner, Carmona, Xu; . . . ) √ Gradient system: dx σ ( t ) = −∇ V γ ( x σ ( t )) dt + σ N dB ( t ) � � U ( x i ) + γ ( x i +1 − x i ) 2 Global potential: V γ ( x ) = 4 i ∈ Λ i ∈ Λ 4-c

  14. The model ⊲ Lattice: Λ = Z /N Z , N � 2 ⊲ Position x i of i th particle: Λ ∋ i �→ x i ∈ R ⊲ Configuration space: X = R Λ 4 x 4 − 1 ⊲ Bistable local potential: U ( x ) = 1 2 x 2 ⊲ Nonlinear local drift term: f ( x ) = − U ′ ( x ) = x − x 3 ⊲ Coupling between sites: discretised Laplacian ⊲ Coupling strength γ ≥ 0 ⊲ Independent Gaussian white noise dB i ( t ) acting on each site � � √ dx i ( t ) = f ( x i ( t )) dt + γ x i +1 ( t ) − 2 x i ( t ) + x i − 1 ( t ) dt + σ NdB i ( t ) 2 Interacting diffusions (Dawson, G¨ artner, Deuschel, Cox, Greven, Shiga, Klenke, Fleischmann; M´ el´ eard; Kondratiev, R¨ ockner, Carmona, Xu; . . . ) √ Gradient system: dx σ ( t ) = −∇ V γ ( x σ ( t )) dt + σ N dB ( t ) � � U ( x i ) + γ ( x i +1 − x i ) 2 Global potential: V γ ( x ) = 4 i ∈ Λ i ∈ Λ 4-d

  15. The model ⊲ Lattice: Λ = Z /N Z , N � 2 ⊲ Position x i of i th particle: Λ ∋ i �→ x i ∈ R ⊲ Configuration space: X = R Λ 4 x 4 − 1 ⊲ Bistable local potential: U ( x ) = 1 2 x 2 ⊲ Nonlinear local drift term: f ( x ) = − U ′ ( x ) = x − x 3 ⊲ Coupling between sites: discretised Laplacian ⊲ Coupling strength γ ≥ 0 ⊲ Independent Gaussian white noise dB i ( t ) acting on each site � � √ dx i ( t ) = f ( x i ( t )) dt + γ x i +1 ( t ) − 2 x i ( t ) + x i − 1 ( t ) dt + σ NdB i ( t ) 2 ⊲ Interacting diffusions (Dawson, G¨ artner, Deuschel, Cox, Greven, Shiga, Klenke, Fleischmann; M´ el´ eard; Kondratiev, R¨ ockner, Carmona, Xu; . . . ) √ Gradient system: dx σ ( t ) = −∇ V γ ( x σ ( t )) dt + σ N dB ( t ) � � U ( x i ) + γ ( x i +1 − x i ) 2 Global potential: V γ ( x ) = 4 i ∈ Λ i ∈ Λ 4-e

  16. The model ⊲ Lattice: Λ = Z /N Z , N � 2 ⊲ Position x i of i th particle: Λ ∋ i �→ x i ∈ R ⊲ Configuration space: X = R Λ 4 x 4 − 1 ⊲ Bistable local potential: U ( x ) = 1 2 x 2 ⊲ Nonlinear local drift term: f ( x ) = − U ′ ( x ) = x − x 3 ⊲ Coupling between sites: discretised Laplacian ⊲ Coupling strength γ ≥ 0 ⊲ Independent Gaussian white noise dB i ( t ) acting on each site � � √ dx i ( t ) = f ( x i ( t )) dt + γ x i +1 ( t ) − 2 x i ( t ) + x i − 1 ( t ) dt + σ NdB i ( t ) 2 ⊲ Interacting diffusions (Dawson, G¨ artner, Deuschel, Cox, Greven, Shiga, Klenke, Fleischmann; M´ el´ eard; Kondratiev, R¨ ockner, Carmona, Xu; . . . ) √ Gradient system: dx σ ( t ) = −∇ V γ ( x σ ( t )) dt + σ N dB ( t ) � U ( x i ) + γ � ( x i +1 − x i ) 2 Global potential: V γ ( x ) = 4 i ∈ Λ i ∈ Λ 4-f

  17. Weak coupling For γ = 0: S = {− 1 , 0 , 1 } Λ , S 0 = {− 1 , 1 } Λ , G = hypercube 5

  18. Weak coupling For γ = 0: S = {− 1 , 0 , 1 } Λ , S 0 = {− 1 , 1 } Λ , G = hypercube Theorem ∀ N ∃ γ ⋆ ( N ) > 0 s.t. ⊲ All x ⋆ ( γ ) ∈ S k ( γ ) depend continuously on γ ∈ [0 , γ ⋆ ( N )) �� √ √ � ⊲ 1 N � 2 γ ⋆ ( N ) � γ ⋆ (3) = 1 4 � inf 3 + 2 3 − 3 = 0 . 2701 . . . 3 5-a

  19. Weak coupling For γ = 0: S = {− 1 , 0 , 1 } Λ , S 0 = {− 1 , 1 } Λ , G = hypercube Theorem ∀ N ∃ γ ⋆ ( N ) > 0 s.t. ⊲ All x ⋆ ( γ ) ∈ S k ( γ ) depend continuously on γ ∈ [0 , γ ⋆ ( N )) �� √ √ � ⊲ 1 N � 2 γ ⋆ ( N ) � γ ⋆ (3) = 1 4 � inf 3 + 2 3 − 3 = 0 . 2701 . . . 3 For 0 < γ ≪ 1: � V γ ( x ⋆ ( γ )) = V 0 ( x ⋆ (0)) + γ i (0)) 2 + O ( γ 2 ) ( x ⋆ i +1 (0) − x ⋆ 4 i ∈ Λ 5-b

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend