self excited wave processes in chains of unidirectionally
play

Self-excited Wave Processes in Chains of Unidirectionally Coupled - PowerPoint PPT Presentation

Self-excited Wave Processes in Chains of Unidirectionally Coupled Relaxation Oscillators Sergey Glyzin P.G. Demidov Yaroslavl State University November 17-19, 2015 S.D. Glyzin YarSU Self-excited Wave Processes in Chains of Unidirectionally


  1. Self-excited Wave Processes in Chains of Unidirectionally Coupled Relaxation Oscillators Sergey Glyzin P.G. Demidov Yaroslavl State University November 17-19, 2015 S.D. Glyzin YarSU Self-excited Wave Processes in Chains of Unidirectionally Coupled Relaxation Oscillators

  2. Introduction u = λ [ f ( u ( t − h )) − g ( u ( t − 1))] u. ˙ (1) u ( t ) > 0 , λ ≫ 1 , h ∈ (0 , 1) , f ( u ) , g ( u ) ∈ C 1 ( R + ) , R + = { u ∈ R : u ≥ 0 } , f (0) = 1 , g (0) = 0; f ( u ) = − a 0 + O (1 /u ) , uf ′ ( u ) = O (1 /u ) , u 2 f ′′ ( u ) = O (1 /u ) , g ( u ) = b 0 + O (1 /u ) , ug ′ ( u ) = O (1 /u ) , (2) u 2 g ′′ ( u ) = O (1 /u ) as u → + ∞ , a 0 > 0 , b 0 > 0 . S.D. Glyzin YarSU Self-excited Wave Processes in Chains of Unidirectionally Coupled Relaxation Oscillators

  3. u = λf ( u ( t − 1)) u, ˙ (3) h = 1 f ( u ) − g ( u ) → f ( u ) , a 0 + b 0 → a. a > 1 . (4) u j = d ( u j +1 − u j ) + λf ( u j ( t − 1)) u j , ˙ j = 1 , . . . , m, u m +1 = u 1 , (5) d = const > 0 . λ ≫ 1 . u 1 ≡ . . . ≡ u m = u ∗ ( t, λ ) , (6) u ∗ ( t, λ ) S.D. Glyzin YarSU Self-excited Wave Processes in Chains of Unidirectionally Coupled Relaxation Oscillators

  4. Main theorem j − 1 � � � u 1 = exp( x/ε ) , u j = exp x/ε + y k , j = 2 , . . . , m, ε = 1 /λ. (7) k =1 � � x = εd (exp y 1 − 1) + F ˙ x ( t − 1) , ε , (8) � � � � y j = d ˙ exp y j +1 − exp y j + G j x ( t − 1) , y 1 ( t − 1) , . . . , y j ( t − 1) , ε , (9) j = 1 , . . . , m − 1 , � � y m = − y 1 − y 2 − . . . − y m − 1 , F ( x, ε ) = f exp( x/ε ) , j j − 1 G j ( x, y 1 , . . . , y j , ε ) = 1 � � � �� � � ��� � � f exp x/ε + y k − f exp x/ε + y k , ε k =1 k =1 j = 1 , . . . , m − 1 . S.D. Glyzin YarSU Self-excited Wave Processes in Chains of Unidirectionally Coupled Relaxation Oscillators

  5. � � 0 < σ 0 < a − 1 , F – Banach space of functions ϕ ( t ) = ϕ 1 ( t ) , . . . , ϕ m ( t ) on − 1 − σ 0 ≤ t ≤ − σ 0 . � � || ϕ || F = max − 1 − σ 0 ≤ t ≤− σ 0 | ϕ j ( t ) | max . (10) 1 ≤ j ≤ m � � � � S = ϕ ( t ) = ϕ 1 ( t ) , . . . , ϕ m ( t ) : ϕ 1 ∈ S 1 , ϕ 2 ∈ S 2 , . . . , ϕ m ∈ S m ⊂ F . S 1 = { ϕ 1 ( t ) ∈ C [ − 1 − σ 0 , − σ 0 ] | − q 1 ≤ ϕ 1 ( t ) ≤ − q 2 , ϕ 1 ( − σ 0 ) = − σ 0 } , q 1 > σ 0 , q 2 ∈ (0 , σ 0 ) , S 2 , . . . , S m ⊂ C [ − 1 − σ 0 , − σ 0 ] . � � x ϕ ( t, ε ) , y 1 ,ϕ ( t, ε ) , . . . , y m − 1 ,ϕ ( t, ε ) , t ≥ − σ 0 (11) Π ε : S → F � � Π ε ( ϕ ) = x ϕ ( t + T ϕ , ε ) , y 1 ,ϕ ( t + T ϕ , ε ) , . . . , y m − 1 ,ϕ ( t + T ϕ , ε ) , (12) − 1 − σ 0 ≤ t ≤ − σ 0 . S.D. Glyzin YarSU Self-excited Wave Processes in Chains of Unidirectionally Coupled Relaxation Oscillators

  6. �� x 0 ( t ) , y 0 1 ( t + T 0 , z ) , . . . , y 0 � Π 0 ( ϕ ) = m − 1 ( t + T 0 , z ) z =( ϕ 2 ( − σ 0 ) ,...,ϕ m ( − σ 0 )) , � � − 1 − σ 0 ≤ t ≤ − σ 0 . (13)  t if 0 ≤ t ≤ 1 ,   x 0 ( t ) = 1 − a ( t − 1) if 1 ≤ t ≤ t 0 + 1 , x 0 ( t + T 0 ) ≡ x 0 ( t ) . (14)  − a + t − t 0 − 1 if t 0 + 1 ≤ t ≤ T 0 ,  S.D. Glyzin YarSU Self-excited Wave Processes in Chains of Unidirectionally Coupled Relaxation Oscillators

  7. � � y j = d ˙ exp y j +1 − exp y j y j (1 + 0) = y j (1 − 0) − (1 + a ) y j (0) , y j ( t 0 + 1 + 0) = y j ( t 0 + 1 − 0) − (1 + 1 /a ) y j ( t 0 ) , j = 1 , . . . , m − 1 , (15) y m = − y 1 − y 2 − . . . − y m − 1 , � ( y 1 , . . . , y m − 1 ) t = − σ 0 = ( z 1 , . . . , z m − 1 ) , (16) � t 0 = 1 + 1 /a . S.D. Glyzin YarSU Self-excited Wave Processes in Chains of Unidirectionally Coupled Relaxation Oscillators

  8. Theorem (on C 1 -convergence) There exist small enough ε 0 = ε 0 ( S ) > 0 such that for all 0 < ε ≤ ε 0 the operator Π ε are defined on S and ε → 0 sup lim || Π ε ( ϕ ) − Π 0 ( ϕ ) || F = 0 , ϕ ∈ S (17) ε → 0 sup lim || ∂ ϕ Π ε ( ϕ ) − ∂ ϕ Π 0 ( ϕ ) || F 0 → F 0 = 0 . ϕ ∈ S S.D. Glyzin YarSU Self-excited Wave Processes in Chains of Unidirectionally Coupled Relaxation Oscillators

  9. def = ( y 0 1 ( t, z ) , y 0 2 ( t, z ) , . . . , y 0 � z → Φ( z ) m − 1 ( t, z )) t = T 0 − σ 0 , (18) � z = ( ϕ 2 ( − σ 0 ) , . . . , ϕ m ( − σ 0 )) . z = z ∗ ϕ ∗ 1 ( t ) , . . . , ϕ ∗ : ϕ ∗ 1 ( t ) = x 0 ( t ) , ϕ ∗ j ( t ) = y 0 � � ϕ ∗ ( t ) = m ( t ) j − 1 ( t + T 0 , z ∗ ) , j = 2 , . . . , m, − 1 − σ 0 ≤ t ≤ − σ 0 S.D. Glyzin YarSU Self-excited Wave Processes in Chains of Unidirectionally Coupled Relaxation Oscillators

  10. Theorem (Compliance Theorem) For any fixed point z = z ∗ of map Φ( z ) (18) , such that det ( I − Φ ′ ( z ∗ )) � = 0 , there exist relaxation cycle of system (8) , (9) . This cycle exists for all small enough ε > 0 and is exponentially orbitally stable (unstable) if r ∗ < 1 ( > 1) , where r ∗ – spectral radius of matrix Φ ′ ( z ∗ ) . S.D. Glyzin YarSU Self-excited Wave Processes in Chains of Unidirectionally Coupled Relaxation Oscillators

  11. a > m − 1 . (19) z j = − 1 a ln 1 d + v j , j = 1 , . . . , m − 1 , (20) d → 0 y j ( t, v, d ) = − 1 a ln 1 d + v j + O ( d 1 − ( m − 1) /a ) if 0 ≤ t < 1 , (21) y j ( t, v, d ) = ln 1 d + ω 0 j ( t, v ) + O ( d 1 − ( m − 1) /a ) if 1 ≤ t < t 0 + 1 , (22) y j ( t, v, d ) = − 1 a ln 1 d + ψ j ( v ) + O ( d 1 − ( m − 1) /a ) if t 0 + 1 ≤ t ≤ T 0 , (23) S.D. Glyzin YarSU Self-excited Wave Processes in Chains of Unidirectionally Coupled Relaxation Oscillators

  12. ω j = exp ω j +1 − exp ω j , ˙ j = 1 , . . . , m − 2 , ω m − 1 = − exp ω m − 1 , ˙ � ω j t =1 = − a v j , j = 1 , . . . , m − 1 � ω 0 m − 1 ( t, v ) + . . . + ω 0 m − s ( t, v ) = � s − 1 � s − ℓ �� ( t − 1) s ( t − 1) ℓ � � = − ln + exp a v m − j , (24) s ! ℓ ! ℓ = 0 j =1 s = 1 , . . . , m − 1 . S.D. Glyzin YarSU Self-excited Wave Processes in Chains of Unidirectionally Coupled Relaxation Oscillators

  13. ψ j ( v ) = ω 0 t = t 0 +1 − (1 + 1 /a ) ω 0 � � j ( t, v ) j ( t, v ) t = t 0 , j = 1 , . . . , m − 1 . (25) � � v j → ψ j ( v ) , j = 1 , . . . , m − 1 . (26) S.D. Glyzin YarSU Self-excited Wave Processes in Chains of Unidirectionally Coupled Relaxation Oscillators

  14. α s = − v m − 1 − . . . − v m − s , s = 1 , . . . , m − 1 � � � � α k → ln r 1 ,k + exp( − aα k ) − (1 + 1 /a ) ln r 2 ,k + exp( − aα k ) , (27) k = 1 , . . . , m − 1 , where r 1 , 1 = 1 + 1 /a, r 2 , 1 = 1 /a, (28) k − 1 r 1 ,k ( α 1 , . . . , α k − 1 ) = (1 + 1 /a ) k (1 + 1 /a ) ℓ � + exp( − aα k − ℓ ) , k ! ℓ ! ℓ =1 k − 1 1 1 � r 2 ,k ( α 1 , . . . , α k − 1 ) = a k k ! + a ℓ ℓ ! exp( − aα k − ℓ ) , k = 2 , . . . , m − 1 . ℓ =1 (29) ( α ∗ 1 , . . . , α ∗ m − 1 ) , S.D. Glyzin YarSU Self-excited Wave Processes in Chains of Unidirectionally Coupled Relaxation Oscillators

  15. j = − 1 a ln 1 z ∗ = ( z ∗ 1 , . . . , z ∗ z ∗ d + v ∗ j + O ( d 1 − ( m − 1) /a ) , m − 1 ) , (30) j = 1 , . . . , m − 1 , d → 0 , where v ∗ m − 1 = − α ∗ 1 , v ∗ m − s = α ∗ s − 1 − α ∗ s , s = 2 , . . . , m − 1 . S.D. Glyzin YarSU Self-excited Wave Processes in Chains of Unidirectionally Coupled Relaxation Oscillators

  16. Thank you for attention! S.D. Glyzin YarSU Self-excited Wave Processes in Chains of Unidirectionally Coupled Relaxation Oscillators

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend