designing rna structures
play

Designing RNA Structures From Theoretical Models to Real Molecules - PowerPoint PPT Presentation

Designing RNA Structures From Theoretical Models to Real Molecules Peter Schuster Institut fr Theoretische Chemie und Molekulare Strukturbiologie der Universitt Wien Microbiology Seminar Mount Sinai School of Medicine, 25.05.2004 Web-Page


  1. Designing RNA Structures From Theoretical Models to Real Molecules Peter Schuster Institut für Theoretische Chemie und Molekulare Strukturbiologie der Universität Wien Microbiology Seminar Mount Sinai School of Medicine, 25.05.2004

  2. Web-Page for further information: http://www.tbi.univie.ac.at/~pks

  3. 1. RNA structures 2. Neutrality in secondary structures 3. Compatibility and metastable structures 4. Some experiments with RNA molecules

  4. 1. RNA structures 2. Neutrality in secondary structures 3. Compatibility and metastable structures 4. Some experiments with RNA molecules

  5. 5' - end N 1 O CH 2 O GCGGAU UUA GCUC AGUUGGGA GAGC CCAGA G CUGAAGA UCUGG AGGUC CUGUG UUCGAUC CACAG A AUUCGC ACCA 5'-e nd 3’-end N A U G C k = , , , OH O N 2 O P O CH 2 O Na � O O OH N 3 O P O CH 2 O Na � 3'-end O O OH Definition of RNA structure 5’-end N 4 O P O CH 2 O Na � 70 O O OH 60 3' - end O P O 10 Na � O 50 20 30 40

  6. 5'-End 3'-End Sequence GCGGAUUUAGCUCAGDDGGGAGAGCMCCAGACUGAAYAUCUGGAGMUCCUGUGTPCGAUCCACAGAAUUCGCACCA 3'-End 5'-End 70 60 Secondary structure 10 50 20 30 40 � Symbolic notation 5'-End 3'-End A symbolic notation of RNA secondary structure that is equivalent to the conventional graphs

  7. Definition and physical relevance of RNA secondary structures RNA secondary structures are listings of Watson-Crick and GU wobble base pairs, which are free of knots and pseudokots . D.Thirumalai, N.Lee, S.A.Woodson, and D.K.Klimov. Annu.Rev.Phys.Chem . 52 :751-762 (2001): „ Secondary structures are folding intermediates in the formation of full three-dimensional structures .“

  8. 4 6 5 4 7 6 6 8 5 � C G 3 1 1 9 4 2 C ’ 2 1 C ’ 3 1 2 2 55.7 � 54.4 � 10.72 Å 4 6 5 4 7 6 6 8 5 3 U = A 1 1 4 9 2 C ’ 2 1 C ’ 3 1 2 57.4 � 56.2 � 10.44 Å Watson-Crick type base pairs

  9. O N H O G=U N N O H N N Deviation from H N Watson-Crick geometry H O N U=G N H O N O H N N Deviation from N H N Watson-Crick geometry H Wobble base pairs

  10. RNA sequence Biophysical chemistry: thermodynamics and kinetics Inverse folding of RNA : RNA folding : Biotechnology, Structural biology, design of biomolecules spectroscopy of with predefined biomolecules, structures and functions Empirical parameters understanding molecular function RNA structure of minimal free energy Sequence, structure, and design

  11. 5’-end 3’-end (h) S 5 (h) S 3 (h) S 4 (h) S 1 Free energy G0 (h) S 2 � (h) S 8 (h) (h) S 9 S 7 (h) S 6 Suboptimal states (h) S 0 Minimum of free energy The minimum free energy and suboptimal structures on a discrete space of conformations

  12. 3'-end pseudoknot "H-type pseudoknot" "Kissing loops" 3'-end 5'-end 5'-end ··((((····· [[ ·))))····(((((·]] ·····))))) ··· Two classes of pseudoknots in RNA structures

  13. 3'-End 60 70 3'-End 5'-End 5'-End 50 70 20 60 10 10 50 20 30 40 30 40 End-on-end stacking of double helical regions yields the L-shape of tRNA phe

  14. 1. RNA structures 2. Neutrality in secondary structures 3. Compatibility and metastable structures 4. Some experiments with RNA molecules

  15. RNA sequence Biophysical chemistry: thermodynamics and kinetics Inverse folding of RNA : RNA folding : Biotechnology, Structural biology, design of biomolecules spectroscopy of with predefined biomolecules, structures and functions Empirical parameters understanding molecular function RNA structure of minimal free energy Sequence, structure, and design

  16. Criterion of Minimum Free Energy UUUAGCCAGCGCGAGUCGUGCGGACGGGGUUAUCUCUGUCGGGCUAGGGCGC GUGAGCGCGGGGCACAGUUUCUCAAGGAUGUAAGUUUUUGCCGUUUAUCUGG UUAGCGAGAGAGGAGGCUUCUAGACCCAGCUCUCUGGGUCGUUGCUGAUGCG CAUUGGUGCUAAUGAUAUUAGGGCUGUAUUCCUGUAUAGCGAUCAGUGUCCG GUAGGCCCUCUUGACAUAAGAUUUUUCCAAUGGUGGGAGAUGGCCAUUGCAG Sequence Space Shape Space

  17. Computed numbers of minimum free energy structures over different nucleotide alphabets P. Schuster, Molecular insights into evolution of phenotypes . In: J. Crutchfield & P.Schuster, Evolutionary Dynamics. Oxford University Press, New York 2003, pp.163-215.

  18. Reference for postulation and in silico verification of neutral networks

  19. Evolution in silico W. Fontana, P. Schuster, Science 280 (1998), 1451-1455

  20. Criterion of Minimum Free Energy UUUAGCCAGCGCGAGUCGUGCGGACGGGGUUAUCUCUGUCGGGCUAGGGCGC GUGAGCGCGGGGCACAGUUUCUCAAGGAUGUAAGUUUUUGCCGUUUAUCUGG UUAGCGAGAGAGGAGGCUUCUAGACCCAGCUCUCUGGGUCGUUGCUGAUGCG CAUUGGUGCUAAUGAUAUUAGGGCUGUAUUCCUGUAUAGCGAUCAGUGUCCG GUAGGCCCUCUUGACAUAAGAUUUUUCCAAUGGUGGGAGAUGGCCAUUGCAG Sequence Space Shape Space

  21. CGTCGTTACAATTTA GTTATGTGCGAATTC CAAATT AAAA ACAAGAG..... G A G T CGTCGTTACAATTTA GTTATGTGCGAATTC CAAATT AAAA ACAAGAG..... A C A C Hamming distance d (I ,I ) = 4 H 1 2 (i) d (I ,I ) = 0 H 1 1 (ii) d (I ,I ) = d (I ,I ) H 1 2 H 2 1 � (iii) d (I ,I ) d (I ,I ) + d (I ,I ) H 1 3 H 1 2 H 2 3 The Hamming distance between genotypes induces a metric in sequence space

  22. Hamming distance d (S ,S ) = 4 H 1 2 d (S ,S ) = 0 (i) H 1 1 (ii) d (S ,S ) = d (S ,S ) H 1 2 H 2 1 � (iii) d (S ,S ) d (S ,S ) + d (S ,S ) H 1 3 H 1 2 H 2 3 The Hamming distance between structures in parentheses notation forms a metric in structure space

  23. ψ Sk = ( ) I. fk = ( f Sk ) Sequence space Real numbers Structure space Mapping from sequence space into structure space and into function

  24. ψ Sk = ( ) I. fk = ( f Sk ) Sequence space Real numbers Structure space

  25. ψ Sk = ( ) I. fk = ( f Sk ) Sequence space Real numbers Structure space The pre-image of the structure S k in sequence space is the neutral network G k

  26. Step 00 Sketch of sequence space Random graph approach to neutral networks

  27. Step 01 Sketch of sequence space Random graph approach to neutral networks

  28. Step 02 Sketch of sequence space Random graph approach to neutral networks

  29. Step 03 Sketch of sequence space Random graph approach to neutral networks

  30. Step 04 Sketch of sequence space Random graph approach to neutral networks

  31. Step 05 Sketch of sequence space Random graph approach to neutral networks

  32. Step 10 Sketch of sequence space Random graph approach to neutral networks

  33. Step 15 Sketch of sequence space Random graph approach to neutral networks

  34. Step 25 Sketch of sequence space Random graph approach to neutral networks

  35. Step 50 Sketch of sequence space Random graph approach to neutral networks

  36. Step 75 Sketch of sequence space Random graph approach to neutral networks

  37. Step 100 Sketch of sequence space Random graph approach to neutral networks

  38. � � � U � -1 � � G = ( S ) | ( ) = I I S k k j j k � � (k) j / λ j = λ k = 12 27 = 0.444 , | G k | / κ - λ κ -1 ( 1) Connectivity threshold: cr = 1 - � � � AUGC Alphabet size : = 4 cr 2 0.5 GC,AU λ λ > network G k is connected cr . . . . k 3 0.423 GUC,AUG λ λ < network G k is not connected cr . . . . 4 0.370 k AUGC Mean degree of neutrality and connectivity of neutral networks

  39. A connected neutral network formed by a common structure

  40. Giant Component A multi-component neutral network formed by a rare structure

  41. 1. RNA structures 2. Neutrality in secondary structures 3. Compatibility and metastable structures 4. Some experiments with RNA molecules

  42. Structure

  43. 3’-end C U G G G A A A A A U C C C C A G A C C G G G G G U U U C C C C G 5’-end G Structure Compatible sequence

  44. 3’-end C A A U G U A G G G C A A G C A A G C A U G C C C A U C C G C A G A A C G C C G G C G G C G G G C G U U C G U C C G C C U G C G 5’-end U U G Structure Compatible sequence

  45. 3’-end C A A U G A U G G G C A A G C A A G C A U C G C C A U C C C G A G Single nucleotides: A U G C , , , A A C G C C G G C G G C G G G C G U U G C U C C G C C U G C G 5’-end U U G Structure Compatible sequence Single bases pairs are varied independently

  46. 3’-end C A A U G A U G G G C A A G C A A G C A U C G C C A U C C AU , UA G C A G Base pairs: GC , CG A A C G C GU , UG C G G C G G C G G G C G U U G C U C C G C C U G C G 5’-end U U G Structure Compatible sequence Base pairs are varied in strict correlation

  47. 3’-end 3’-end C C A A A A U U G G U U A A G G G G G C G C A A A A G C G C A A A A G C G C A A U U C C G G C C C C A A U U C C C C G G C C A A G G A A A A C C G C G C C C G G G C G C G G G G C G U G G G G G C G C G U U U U C G C G U U C C C G C G C C C C U G U G C U G G 5’-end U 5’-end U U U G G Structure Compatible sequences

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend