demand aware network dan design
play

Demand Aware Network ( DAN ) Design Some Results and Open Questions - PowerPoint PPT Presentation

Demand Aware Network ( DAN ) Design Some Results and Open Questions Chen Avin Joint work with Stefan Schmid, Kaushik Mondal, Alexandr Hercules, Andreas Loukas Motivation Demand Aware Network Design? self-adjust the networks


  1. Demand Aware Network ( DAN ) Design Some Results and Open Questions Chen Avin Joint work with Stefan Schmid, Kaushik Mondal, Alexandr Hercules, Andreas Loukas

  2. Motivation • Demand Aware Network Design? • “self-adjust” the networks‘ routing paths (topology) to routing requests • Data Centres? • ProjecTor / Wireless technologies • Skype example? Mirror assembly Reflected beam • Peer-to-Peer Networks Received beam Diffracted beam Towards destination Photodetectors DMDs Lasers Input beam Array of Micromirrors

  3. Outline • Motivation • Problem Settings • Relation to other problems • Lower Bounds • Bounded degree network design • The continuous discrete approach • Future work

  4. Problem Settings 1 2 3 4 5 6 7 2 1 1 1 2 3 1 0 65 13 65 65 65 65 2 1 2 2 0 0 0 0 • Demand distribution, over er V × V . W D 65 65 65 1 1 2 1 3 0 0 0 13 65 65 13 1 2 4 4 0 0 0 0 65 65 65 e the ( ) e 1 3 4 5 0 0 0 0 65 65 65 • Pairwise communication demands 2 3 6 0 0 0 0 0 65 65 3 2 1 3 7 0 0 0 65 65 13 65 7 (a) • Can be represented as directed weighted graph 3 3 1 6 2 2 2 1 • A network N = ( V, E ) 5 5 1 2 5 1 4 • Metric of interest: Expected Path Length 2 3 4 ÿ EPL( D , N ) = E D [d N ( · , · )] = p( u, v ) · d N ( u, v ) ( u,v ) ∈ D g across the host network usually occurs along shortest path ) · d N ( u, v ) - hop distance between u,v in N

  5. Problem Settings 1 2 3 4 5 6 7 2 1 1 1 2 3 1 0 65 13 65 65 65 65 2 1 2 2 0 0 0 0 • Demand distribution, D 65 65 65 1 1 2 1 3 0 0 0 13 65 65 13 1 2 4 4 0 0 0 0 65 65 65 1 3 4 5 0 0 0 0 65 65 65 2 3 6 0 0 0 0 0 • Expected path length 65 65 3 2 1 3 7 0 0 0 65 65 13 65 7 (a) 3 3 ÿ EPL( D , N ) = E D [d N ( · , · )] = p( u, v ) · d N ( u, v ) 1 6 2 2 ( u,v ) ∈ D 2 1 5 • Desired topology family N 5 g across the host network usually occurs along shortest path 1 2 5 1 4 • e.g., bounded degree, trees, sparse, etc. 2 3 4 7 • Optimal Demand Aware Network (DAN) 1 6 N ∗ = arg min N ∈ N EPL( D , N ) 2 5 3 4

  6. Relation to Other Problems 7 3 3 • Minimum Linear Arrangement (MLA) 1 6 2 2 2 1 5 5 1 2 5 1 4 2 3 4

  7. Relation to Other Problems 7 3 3 • Minimum Linear Arrangement (MLA) 1 6 2 2 2 1 5 • Embeddings (guest, host graphs) 5 1 2 5 1 4 • Spanners 2 3 4 • Information Theory / Coding n 1 Entropy : ÿ • H ( X ) = p ( x i ) log 2 p ( x i ) i =1 n Conditional Entropy: ÿ • H ( X | Y ) = p ( y j ) H ( X | Y = y j ) = j =1 Coding - Expected code length •

  8. Lower Bound • For a Δ bounded degree DAN • Theorem N ∗ BND( D , ∆ ) Ø Ω (max( H ∆ ( Y | X ) , H ∆ ( X | Y )) 1 2 3 4 5 6 7 • Proof Idea (using coding): 2 1 1 1 2 3 1 0 65 13 65 65 65 65 2 1 2 2 0 0 0 0 65 65 65 1 1 2 1 3 0 0 0 • Replacing each row with an optimal Δ -ary tree 13 65 65 13 1 2 4 4 0 0 0 0 65 65 65 1 3 4 5 0 0 0 0 65 65 65 2 3 • Same for columns 6 0 0 0 0 0 65 65 3 2 1 3 7 0 0 0 65 65 13 65 • Optimal code length is larger than row Entropy

  9. 
 
 Bounded Degree DAN • Bounded (e.g., Δ = constant) degree • Theorem: Can design “optimal” network , s.t 
 N EPL( D , N ) ≤ O ( H ( Y | X ) + H ( X | Y )) for, This is asymptotically optimal when ∆ is a • Sparse distributions (weighted, directed) • Local doubling dimension distribution • Possibly dense but uniform and regular

  10. Sparse Distributions • Proof idea i i Optimal bounded degree tree

  11. Sparse Distributions • Proof idea i i Optimal bounded degree tree Problem i j Solution

  12. Sparse Distributions • Proof idea i i Optimal bounded degree tree Problem j i i j Solution

  13. Doubling Dimensions Dist. • Local Doubling Dimension distribution 2-hops balls can be covered by 1-hop balls

  14. Doubling Dimensions Dist. • Local Doubling Dimension distribution 2-hops balls can be covered by 1-hop balls • Can be a dense graph

  15. Continuous-Discrete Design 1 2 3 4 5 6 7 2 1 1 1 2 3 1 0 • Greedy routing 65 13 65 65 65 65 2 1 2 2 0 0 0 0 65 65 65 1 1 2 1 3 0 0 0 13 65 65 13 1 2 4 4 0 0 0 0 65 65 65 1 3 4 5 0 0 0 0 65 65 65 2 3 6 0 0 0 0 0 65 65 3 2 1 3 7 0 0 0 65 65 13 65 (a)

  16. Continuous-Discrete Design 1 2 3 4 5 6 7 2 1 1 1 2 3 1 0 • Greedy routing 65 13 65 65 65 65 2 1 2 2 0 0 0 0 65 65 65 1 1 2 1 3 0 0 0 13 65 65 13 1 2 4 4 0 0 0 0 65 65 65 1 3 4 5 0 0 0 0 65 65 65 2 3 6 0 0 0 0 0 𝑐𝑏𝑑𝑙(𝑦) 65 65 𝑚𝑓𝑔𝑢(𝑦) 𝑠𝑗𝑕ℎ𝑢(𝑦) 3 2 1 3 7 0 0 0 65 65 13 65 𝑦 𝑦 + 1 2𝑦 mod 1 0 𝑦 1 2 2 (a) x 1 = 0 x 1 = 0 u 1 x 2 = F(u 1 ) x 2 = 0.1 u 2 u 6 0.8 = x 6 right( s 4 ) x 3 = 0.25 s(x i ) = [x i , x i+1 ) u 5 0.7 = x 5 u x i+1 F(u i ) = left( s 4 ) 3 s 4 cs 4 x i = F(u i-1 ) x 4 = 0.45 u 4 cs(i) = [cw(i), cw(i)+2 -l(u i ) )

  17. Continuous-Discrete Design 1 2 3 4 5 6 7 2 1 1 1 2 3 1 0 • Greedy routing 65 13 65 65 65 65 2 1 2 2 0 0 0 0 65 65 65 1 1 2 1 3 0 0 0 13 65 65 13 1 2 4 4 0 0 0 0 65 65 65 1 3 4 5 0 0 0 0 65 65 65 2 3 6 0 0 0 0 0 65 65 3 2 1 3 7 0 0 0 65 65 13 65 ( x ) (a) F 0 0 000 1 100 1 001 ( ) 0 010 0 F x } i ( ) ( ) p x F x 0 1 i i 1 0 ( ) F x � 1 i 101 1 1 0 011 110 0 111 1 x x x x x � 1 1 0 1 i i Shannon-Fano-Elias Coding De-Bruijn Graph

  18. Continuous-Discrete Design 1 2 3 4 5 6 7 2 1 1 1 2 3 1 0 • Greedy routing 65 13 65 65 65 65 2 1 2 2 0 0 0 0 65 65 65 1 1 2 1 3 0 0 0 13 65 65 13 1 2 4 4 0 0 0 0 • Theorem: 65 65 65 1 3 4 5 0 0 0 0 65 65 65 2 3 6 0 0 0 0 0 • Linear size 65 65 3 2 1 3 7 0 0 0 65 65 13 65 (a) • Fair (please explain) • Robust to failures • Expected path length: EPL ( R , G, A ) < min { H ( p s ) , H ( p d ) } + 2 .

  19. Future Work / Discussion • New “Graph Entropy” measure for networks • Online algorithms - Amortize analysis • Splay-nets example • Distributed algorithms? • Practical use ???

  20. Thank you avin@cse.bgu.ac.il See papers: 
 • Demand-Aware Network Designs of Bounded Degree . Chen Avin, Kaushik Mondal, and Stefan Schmid.. ArXiv Technical Report, May 2017. https://arxiv.org/ abs/1705.06024 • Towards Communication-Aware Robust Topologies . Chen Avin, Alexandr Hercules, Andreas Loukas, and Stefan Schmid. 
 https://arxiv.org/abs/1705.07163 • SplayNet: Towards Locally Self-Adjusting Networks . Stefan Schmid, Chen Avin, Christian Scheideler, Michael Borokhovich, Bernhard Haeupler, and Zvi Lotker. IEEE/ACM Transactions on Networking (ToN). 
 http://ieeexplore.ieee.org/document/7066977/

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend