deductive verification of hybrid systems
play

Deductive Verification Of Hybrid Systems Lectures on Formal Methods - PowerPoint PPT Presentation

Deductive Verification Of Hybrid Systems Lectures on Formal Methods for Cyber-Physical Systems SOKENDAI, 07/29/19 Jrmy Dubut National Institute of Informatics Japanese-French Laboratory of Informatics Objectives of this lecture


  1. Deductive Verification Of Hybrid Systems Lectures on Formal Methods for Cyber-Physical Systems SOKENDAI, 07/29/19 Jérémy Dubut National Institute of Informatics Japanese-French Laboratory of Informatics

  2. Objectives of this lecture • Deductive system to prove invariants of hybrid systems • Representability of HS (hybrid programs) • Platzer’s Di ff erential Dynamic Logic • Sequent calculus for this logic

  3. References • T. A. Henzinger, The Theory of Hybrid Automata, Verification of 
 Digital and Hybrid Systems, volume 170 of the NATO ASI Series , 
 pp 265-292. Springer, 2000. • A. Platzer’s group. http://symbolaris.com • A. Platzer, Logical Foundations of Cyber-Physical Systems. 
 Springer, 2018. • J. Kol č ák, I. Hasuo, J. Dubut, S. Katsumata, D. Sprunger, 
 A. Yamada, Relational Di ff erential Dynamic Logic. Preprint 
 arXiv:1903.00153.

  4. Recap’ on hybrid automata A hybrid automaton is: o ff · x ≥ T x = − 0.1 x T ∈ [15,30] x ≥ T − 2 c ∈ {1,2,3} x > T + 1 turn x < T − 1 turn on o ff c ∈ {1,2,3} T ∈ [15,30] on · x ≤ T x = 4 c − 0.1 x T ∈ [15,30] x ≤ T + 2 c ∈ {1,2,3} Thermostat system

  5. Recap’ on hybrid automata A hybrid automaton is: o ff • a set M of modes · x ≥ T x = − 0.1 x T ∈ [15,30] x ≥ T − 2 c ∈ {1,2,3} M = {on, off} x > T + 1 turn x < T − 1 turn on o ff c ∈ {1,2,3} T ∈ [15,30] on · x ≤ T x = 4 c − 0.1 x T ∈ [15,30] x ≤ T + 2 c ∈ {1,2,3} Thermostat system

  6. Recap’ on hybrid automata A hybrid automaton is: o ff • a set M of modes · x ≥ T x = − 0.1 x • a set V of variables T ∈ [15,30] x ≥ T − 2 c ∈ {1,2,3} V = {x, c, T} x > T + 1 turn x < T − 1 turn on o ff c ∈ {1,2,3} T ∈ [15,30] on · x ≤ T x = 4 c − 0.1 x T ∈ [15,30] x ≤ T + 2 c ∈ {1,2,3} Thermostat system

  7. Recap’ on hybrid automata A hybrid automaton is: o ff • a set M of modes · x ≥ T x = − 0.1 x • a set V of variables • a set E of events T ∈ [15,30] x ≥ T − 2 c ∈ {1,2,3} x > T + 1 turn x < T − 1 turn E = {turn on, turn off} on o ff c ∈ {1,2,3} T ∈ [15,30] on · x ≤ T x = 4 c − 0.1 x T ∈ [15,30] x ≤ T + 2 c ∈ {1,2,3} Thermostat system

  8. Recap’ on hybrid automata A hybrid automaton is: o ff • a set M of modes · x ≥ T x = − 0.1 x • a set V of variables • a set E of events T ∈ [15,30] • source and target functions x ≥ T − 2 c ∈ {1,2,3} s , t : E ⟶ M x > T + 1 turn x < T − 1 turn on o ff c ∈ {1,2,3} s(turn off) = on T ∈ [15,30] s(turn on) = off t(turn off) = off on t(turn on) = on · x ≤ T x = 4 c − 0.1 x T ∈ [15,30] x ≤ T + 2 c ∈ {1,2,3} Thermostat system

  9. Recap’ on hybrid automata A hybrid automaton is: o ff • a set M of modes · x ≥ T x = − 0.1 x • a set V of variables • a set E of events T ∈ [15,30] • source and target functions x ≥ T − 2 c ∈ {1,2,3} s , t : E ⟶ M • for every mode m, a flow function x > T + 1 turn x < T − 1 turn F m : ℝ V × ℝ ⟶ ℝ V on o ff c ∈ {1,2,3} T ∈ [15,30] F off ( x , c , T , t ) = ( − 0.1 x ,0,0) on · x ≤ T x = 4 c − 0.1 x T ∈ [15,30] x ≤ T + 2 c ∈ {1,2,3} F on ( x , c , T , t ) = (4 c − 0.1 x ,0,0) Thermostat system

  10. Recap’ on hybrid automata A hybrid automaton is: o ff • a set M of modes · x ≥ T x = − 0.1 x • a set V of variables • a set E of events T ∈ [15,30] • source and target functions x ≥ T − 2 c ∈ {1,2,3} s , t : E ⟶ M • for every mode m, a flow function x > T + 1 turn x < T − 1 turn F m : ℝ V × ℝ ⟶ ℝ V on o ff c ∈ {1,2,3} T ∈ [15,30] F off ( x , c , T , t ) = ( − 0.1 x ,0,0) on · x ≤ T x = 4 c − 0.1 x x ( t ) = cst exp( − 0.1 t ) c = cst , T = cst T ∈ [15,30] x ≤ T + 2 c ∈ {1,2,3} F on ( x , c , T , t ) = (4 c − 0.1 x ,0,0) Thermostat system x ( t ) = 40 c + cst exp( − 0.1 t ) c = cst , T = cst

  11. Recap’ on hybrid automata A hybrid automaton is: o ff • a set M of modes · x ≥ T x = − 0.1 x • a set V of variables • a set E of events T ∈ [15,30] • source and target functions x ≥ T − 2 c ∈ {1,2,3} s , t : E ⟶ M • for every mode m, a flow function x > T + 1 turn x < T − 1 turn F m : ℝ V × ℝ ⟶ ℝ V on o ff • for every mode m, an invariant predicate c ∈ {1,2,3} I m ⊆ ℝ V T ∈ [15,30] on · I off = {( x , c , T ) ∣ x ≥ T − 2} x ≤ T x = 4 c − 0.1 x T ∈ [15,30] x ≤ T + 2 c ∈ {1,2,3} I on = {( x , c , T ) ∣ x ≤ T + 2} Thermostat system

  12. Recap’ on hybrid automata A hybrid automaton is: o ff • a set M of modes · x ≥ T x = − 0.1 x • a set V of variables • a set E of events T ∈ [15,30] • source and target functions x ≥ T − 2 c ∈ {1,2,3} s , t : E ⟶ M • for every mode m, a flow function x > T + 1 turn x < T − 1 turn F m : ℝ V × ℝ ⟶ ℝ V on o ff • for every mode m, an invariant predicate c ∈ {1,2,3} I m ⊆ ℝ V T ∈ [15,30] • for every event e, a guard predicate G e ⊆ ℝ V on · x ≤ T x = 4 c − 0.1 x T ∈ [15,30] x ≤ T + 2 G turn off = {( x , c , T ) ∣ x > T + 1} c ∈ {1,2,3} Thermostat system G turn on = {( x , c , T ) ∣ x < T − 1}

  13. Recap’ on hybrid automata A hybrid automaton is: o ff • a set M of modes · x ≥ T x = − 0.1 x • a set V of variables • a set E of events T ∈ [15,30] • source and target functions x ≥ T − 2 c ∈ {1,2,3} s , t : E ⟶ M • for every mode m, a flow function x > T + 1 turn x < T − 1 turn F m : ℝ V × ℝ ⟶ ℝ V on o ff • for every mode m, an invariant predicate c ∈ {1,2,3} I m ⊆ ℝ V T ∈ [15,30] • for every event e, a guard predicate G e ⊆ ℝ V on • for every event e, a jump relation · J e ⊆ ℝ V × ℝ V x ≤ T x = 4 c − 0.1 x T ∈ [15,30] x ≤ T + 2 c ∈ {1,2,3} J turn off = {( x , c , T , x ′ � , c ′ � , T ′ � ) ∣ x = x ′ � ∧ c = c ′ � ∧ T = T ′ � } Thermostat system J turn on = {( x , c , T , x ′ � , c ′ � , T ′ � ) ∣ x = x ′ � ∧ c ′ � ∈ {1,2,3} ∧ T ′ � ∈ [15,30]}

  14. Recap’ on hybrid automata A hybrid automaton is: o ff • a set M of modes · x ≥ T x = − 0.1 x • a set V of variables • a set E of events T ∈ [15,30] • source and target functions x ≥ T − 2 c ∈ {1,2,3} s , t : E ⟶ M • for every mode m, a flow function x > T + 1 turn x < T − 1 turn F m : ℝ V × ℝ ⟶ ℝ V on o ff • for every mode m, an invariant predicate c ∈ {1,2,3} I m ⊆ ℝ V T ∈ [15,30] • for every event e, a guard predicate G e ⊆ ℝ V on • for every event e, a jump relation · J e ⊆ ℝ V × ℝ V x ≤ T x = 4 c − 0.1 x • for every mode m, an initial predicate T ∈ [15,30] I 0, m ⊆ ℝ V x ≤ T + 2 c ∈ {1,2,3} I 0, off = {( x , c , T ) ∣ x ≥ T ∧ c ∈ {1,2,3} ∧ T ∈ [15,30]} Thermostat system I 0, on = {( x , c , T ) ∣ x ≤ T ∧ c ∈ {1,2,3} ∧ T ∈ [15,30]}

  15. Verification of hybrid systems Goal: prove that the system is not going wrong This means proving some properties on the set of 
 reachable configurations

  16. Configurations of a hybrid automaton A hybrid automaton is: • a set M of modes • a set V of variables • a set E of events A configuration is an element of the form • source and target functions ( m , ω ) ∈ M × ℝ V s , t : E ⟶ M • for every mode m, a flow function F m : ℝ V × ℝ ⟶ ℝ V An initial configuration is a configuration • for every mode m, an invariant predicate such that . ( m , ω ) ω ∈ I 0, m I m ⊆ ℝ V • for every event e, a guard predicate G e ⊆ ℝ V A valid configuration is a configuration • for every event e, a jump relation such that . ( m , ω ) ω ∈ I m J e ⊆ ℝ V × ℝ V • for every mode m, an initial predicate I 0, m ⊆ ℝ V

  17. Example o ff · x ≥ T x = − 0.1 x T ∈ [15,30] x ≥ T − 2 c ∈ {1,2,3} configuration initial valid ( m , x , c , T ) x > T + 1 turn x < T − 1 turn ( o ff ,18,1,20) on o ff c ∈ {1,2,3} ( o ff ,17,2,20) T ∈ [15,30] ( on ,17,2,20) on ( on ,21,1,20) · x ≤ T x = 4 c − 0.1 x T ∈ [15,30] x ≤ T + 2 c ∈ {1,2,3} Thermostat system

  18. Example o ff · x ≥ T x = − 0.1 x T ∈ [15,30] x ≥ T − 2 c ∈ {1,2,3} configuration initial valid ( m , x , c , T ) x > T + 1 turn x < T − 1 turn ( o ff ,18,1,20) No Yes on o ff c ∈ {1,2,3} ( o ff ,17,2,20) No No T ∈ [15,30] ( on ,17,2,20) Yes Yes on ( on ,21,1,20) · No Yes x ≤ T x = 4 c − 0.1 x T ∈ [15,30] x ≤ T + 2 c ∈ {1,2,3} Thermostat system

  19. Discrete transitions of HA A hybrid automaton is: • a set M of modes • a set V of variables • a set E of events • source and target functions Given two valid configurations and s , t : E ⟶ M ( m 1 , ω 1 ) ( m 2 , ω 2 ) • for every mode m, a flow function we have a discrete transition F m : ℝ V × ℝ ⟶ ℝ V ( m 1 , ω 1 ) ⟶ d ( m 2 , ω 2 ) • for every mode m, an invariant predicate if there is an event such that: e ∈ E • and I m ⊆ ℝ V s ( e ) = m 1 t ( e ) = m 2 • • for every event e, a guard predicate ω 1 ∈ G e • G e ⊆ ℝ V ( ω 1 , ω 2 ) ∈ J e • for every event e, a jump relation J e ⊆ ℝ V × ℝ V • for every mode m, an initial predicate I 0, m ⊆ ℝ V

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend