damir kinzebulatov u laval qu ebec http archimede mat
play

Damir Kinzebulatov, U Laval, Qu ebec - PowerPoint PPT Presentation

Damir Kinzebulatov, U Laval, Qu ebec http://archimede.mat.ulaval.ca/pages/kinzebulatov 1 / 27 Brownian motion with general drift Damir Kinzebulatov joint with Yuliy A. Sem enov, Toronto Probability and Analysis 2019 Damir Kinzebulatov,


  1. Damir Kinzebulatov, U Laval, Qu´ ebec http://archimede.mat.ulaval.ca/pages/kinzebulatov 1 / 27

  2. Brownian motion with general drift Damir Kinzebulatov joint with Yuliy A. Sem¨ enov, Toronto Probability and Analysis 2019 Damir Kinzebulatov, U Laval, Qu´ ebec http://archimede.mat.ulaval.ca/pages/kinzebulatov 1 / 27

  3. This talk The subject of this talk: existence and uniqueness (in law) of weak solution to X (0) = x ∈ R d , dX t = − b ( X t ) dt + dW t , for a locally unbounded general b : R d → R d , d ≥ 3 Admissible singularities of b ? Damir Kinzebulatov, U Laval, Qu´ ebec http://archimede.mat.ulaval.ca/pages/kinzebulatov 2 / 27

  4. This talk The subject of this talk: existence and uniqueness (in law) of weak solution to X (0) = x ∈ R d , dX t = − b ( X t ) dt + dW t , for a locally unbounded general b : R d → R d , d ≥ 3 Admissible singularities of b ? Principal results: N. I. Portenko (1982): | b | ∈ L p + L ∞ , p > d (analytic proof or via Girsanov transform) Damir Kinzebulatov, U Laval, Qu´ ebec http://archimede.mat.ulaval.ca/pages/kinzebulatov 2 / 27

  5. This talk The subject of this talk: existence and uniqueness (in law) of weak solution to X (0) = x ∈ R d , dX t = − b ( X t ) dt + dW t , for a locally unbounded general b : R d → R d , d ≥ 3 Admissible singularities of b ? Principal results: N. I. Portenko (1982): | b | ∈ L p + L ∞ , p > d (analytic proof or via Girsanov transform) R. Bass-Z.-Q. Chen (2003) for a larger class: b ∈ K d +1 0 Damir Kinzebulatov, U Laval, Qu´ ebec http://archimede.mat.ulaval.ca/pages/kinzebulatov 2 / 27

  6. of vector fields b : R d → R d Kato class K d +1 0 A vector field b is in the Kato class K d +1 , 0 < δ < 1 , if δ �| b | ( λ − ∆) − 1 2 � 1 → 1 ≤ δ (a way to say that b · ∇ ≤ − ∆ in L 1 ) Damir Kinzebulatov, U Laval, Qu´ ebec http://archimede.mat.ulaval.ca/pages/kinzebulatov 3 / 27

  7. of vector fields b : R d → R d Kato class K d +1 0 A vector field b is in the Kato class K d +1 , 0 < δ < 1 , if δ �| b | ( λ − ∆) − 1 2 � 1 → 1 ≤ δ (a way to say that b · ∇ ≤ − ∆ in L 1 ) Then ≡ K d +1 := K d +1 � K d +1 0 δ δ> 0 Damir Kinzebulatov, U Laval, Qu´ ebec http://archimede.mat.ulaval.ca/pages/kinzebulatov 3 / 27

  8. of vector fields b : R d → R d Kato class K d +1 0 A vector field b is in the Kato class K d +1 , 0 < δ < 1 , if δ �| b | ( λ − ∆) − 1 2 � 1 → 1 ≤ δ (a way to say that b · ∇ ≤ − ∆ in L 1 ) Then ≡ K d +1 := K d +1 � K d +1 0 δ δ> 0 There are b ∈ K d +1 such that | b | �∈ L 1+ ε loc (this excludes Girsanov transform) 0 Damir Kinzebulatov, U Laval, Qu´ ebec http://archimede.mat.ulaval.ca/pages/kinzebulatov 3 / 27

  9. Kato class K d +1 0 The role of Kato class: Qi S. Zhang (1996): Gaussian bounds on the heat kernel of − ∆ + b · ∇ , K d +1 0 R. Bass-Z.-Q. Chen (2003): SDEs with b ∈ K d +1 0 Damir Kinzebulatov, U Laval, Qu´ ebec http://archimede.mat.ulaval.ca/pages/kinzebulatov 4 / 27

  10. Kato class K d +1 0 The role of Kato class: Qi S. Zhang (1996): Gaussian bounds on the heat kernel of − ∆ + b · ∇ , K d +1 0 R. Bass-Z.-Q. Chen (2003): SDEs with b ∈ K d +1 – This talk: larger class of 0 drifts b Damir Kinzebulatov, U Laval, Qu´ ebec http://archimede.mat.ulaval.ca/pages/kinzebulatov 4 / 27

  11. The class of drifts in this talk 1 A vector field b is in the class F δ , 0 < δ < 1 , if 2 1 2 ( λ − ∆) − 1 4 � 2 → 2 ≤ δ �| b | 2 in L 2 (cf. − ∆ + b · ∇ , where, roughly, ∇ ≃ ( − ∆) 1 1 2 ) (a way to say | b | ≤ ( − ∆) Damir Kinzebulatov, U Laval, Qu´ ebec http://archimede.mat.ulaval.ca/pages/kinzebulatov 5 / 27

  12. The class of drifts in this talk 1 A vector field b is in the class F δ , 0 < δ < 1 , if 2 1 2 ( λ − ∆) − 1 4 � 2 → 2 ≤ δ �| b | 2 in L 2 (cf. − ∆ + b · ∇ , where, roughly, ∇ ≃ ( − ∆) 1 1 2 ) (a way to say | b | ≤ ( − ∆) Larger than Kato class: 1 K d +1 2 � F δ δ e.g. by interpolation between �| b | ( λ − ∆) − 1 2 � 1 → 1 ≤ δ and (by duality) � ( λ − ∆) − 1 2 | b |� ∞ ≤ δ Damir Kinzebulatov, U Laval, Qu´ ebec http://archimede.mat.ulaval.ca/pages/kinzebulatov 5 / 27

  13. The class of drifts in this talk 1 δ , but not of K d +1 The following are proper sub-classes of F 2 (increasing order): δ Damir Kinzebulatov, U Laval, Qu´ ebec http://archimede.mat.ulaval.ca/pages/kinzebulatov 6 / 27

  14. The class of drifts in this talk 1 δ , but not of K d +1 The following are proper sub-classes of F 2 (increasing order): δ 1 L d + L ∞ � F δ for any δ > 0 (Sobolev) 2 Damir Kinzebulatov, U Laval, Qu´ ebec http://archimede.mat.ulaval.ca/pages/kinzebulatov 6 / 27

  15. The class of drifts in this talk 1 δ , but not of K d +1 The following are proper sub-classes of F 2 (increasing order): δ 1 L d + L ∞ � F δ for any δ > 0 (Sobolev) 2 L d, ∞ + L ∞ � F 1 δ (Strichartz) 2 Damir Kinzebulatov, U Laval, Qu´ ebec http://archimede.mat.ulaval.ca/pages/kinzebulatov 6 / 27

  16. The class of drifts in this talk 1 δ , but not of K d +1 The following are proper sub-classes of F 2 (increasing order): δ 1 L d + L ∞ � F δ for any δ > 0 (Sobolev) 2 L d, ∞ + L ∞ � F 1 1 δ (Strichartz) e.g. b ( x ) = δ d − 2 2 | x | − 2 x is in F δ (Hardy) 2 2 Damir Kinzebulatov, U Laval, Qu´ ebec http://archimede.mat.ulaval.ca/pages/kinzebulatov 6 / 27

  17. The class of drifts in this talk 1 δ , but not of K d +1 The following are proper sub-classes of F 2 (increasing order): δ 1 L d + L ∞ � F δ for any δ > 0 (Sobolev) 2 L d, ∞ + L ∞ � F 1 1 δ (Strichartz) e.g. b ( x ) = δ d − 2 2 | x | − 2 x is in F δ (Hardy) 2 2 1 Campanato-Morrey class � F δ (a proof in Fefferman-Phong) 2 Damir Kinzebulatov, U Laval, Qu´ ebec http://archimede.mat.ulaval.ca/pages/kinzebulatov 6 / 27

  18. The class of drifts in this talk 1 δ , but not of K d +1 The following are proper sub-classes of F 2 (increasing order): δ 1 L d + L ∞ � F δ for any δ > 0 (Sobolev) 2 L d, ∞ + L ∞ � F 1 1 δ (Strichartz) e.g. b ( x ) = δ d − 2 2 | x | − 2 x is in F δ (Hardy) 2 2 1 Campanato-Morrey class � F δ (a proof in Fefferman-Phong) 2 1 S.Y.A. Chang-M. Wilson-T. Wolff class � F 2 δ Damir Kinzebulatov, U Laval, Qu´ ebec http://archimede.mat.ulaval.ca/pages/kinzebulatov 6 / 27

  19. The class of drifts in this talk 1 δ , but not of K d +1 The following are proper sub-classes of F 2 (increasing order): δ 1 L d + L ∞ � F δ for any δ > 0 (Sobolev) 2 L d, ∞ + L ∞ � F 1 1 δ (Strichartz) e.g. b ( x ) = δ d − 2 2 | x | − 2 x is in F δ (Hardy) 2 2 1 Campanato-Morrey class � F δ (a proof in Fefferman-Phong) 2 1 S.Y.A. Chang-M. Wilson-T. Wolff class � F 2 δ 1 1 2 ∔ | b | is well defined Remark: b ∈ F δ ensures that the form-sum ( λ − ∆) 2 Damir Kinzebulatov, U Laval, Qu´ ebec http://archimede.mat.ulaval.ca/pages/kinzebulatov 6 / 27

  20. Main result Theorem 1 d 1 − d Let b ∈ F 1 / 2 2 (2 e ) − 1 1 with 0 < δ < m − 1 d − 2 2 ( d − 1) 2 . 2 d d 4 ( d − 1) 2 , where m d := π δ 1 D. Kinzebulatov, Yu.A. Sem¨ enov, arXiv:1710.06729 2 D. Kinzebulatov, Annali SNS Pisa, 2017 Damir Kinzebulatov, U Laval, Qu´ ebec http://archimede.mat.ulaval.ca/pages/kinzebulatov 7 / 27

  21. Main result Theorem 1 d 1 − d Let b ∈ F 1 / 2 2 (2 e ) − 1 1 with 0 < δ < m − 1 d − 2 2 ( d − 1) 2 . 2 d d 4 ( d − 1) 2 , where m d := π δ There is Feller generator Λ ⊃ − ∆ + b · ∇ on C ∞ = { f ∈ C b : lim x →∞ f ( x ) = 0 } ( sup -norm) 2 1 D. Kinzebulatov, Yu.A. Sem¨ enov, arXiv:1710.06729 2 D. Kinzebulatov, Annali SNS Pisa, 2017 Damir Kinzebulatov, U Laval, Qu´ ebec http://archimede.mat.ulaval.ca/pages/kinzebulatov 7 / 27

  22. Main result Theorem 1 d 1 − d Let b ∈ F 1 / 2 1 2 (2 e ) − 1 with 0 < δ < m − 1 d − 2 2 ( d − 1) 2 . 2 d d 4 ( d − 1) 2 , where m d := π δ There is Feller generator Λ ⊃ − ∆ + b · ∇ on C ∞ = { f ∈ C b : lim x →∞ f ( x ) = 0 } ( sup -norm) 2 Let P x be the probability measures on D ([0 , ∞ ) , ¯ R d ) determined by e − t Λ ∞ ( b ) . 1 D. Kinzebulatov, Yu.A. Sem¨ enov, arXiv:1710.06729 2 D. Kinzebulatov, Annali SNS Pisa, 2017 Damir Kinzebulatov, U Laval, Qu´ ebec http://archimede.mat.ulaval.ca/pages/kinzebulatov 7 / 27

  23. Main result Theorem 1 d 1 − d Let b ∈ F 1 / 2 1 2 (2 e ) − 1 with 0 < δ < m − 1 d − 2 2 ( d − 1) 2 . 2 d d 4 ( d − 1) 2 , where m d := π δ There is Feller generator Λ ⊃ − ∆ + b · ∇ on C ∞ = { f ∈ C b : lim x →∞ f ( x ) = 0 } ( sup -norm) 2 Let P x be the probability measures on D ([0 , ∞ ) , ¯ R d ) determined by e − t Λ ∞ ( b ) . Then: 1. P x are concentrated on C ([0 , ∞ ) , R d ) � t 2. E P x 0 | b ( X ( s )) | ds < ∞ and there exists a d -dimensional Brownian motion W t such that P x a.s. � t √ X t = x − b ( X s ) ds + 2 W t , t ≥ 0 0 1 D. Kinzebulatov, Yu.A. Sem¨ enov, arXiv:1710.06729 2 D. Kinzebulatov, Annali SNS Pisa, 2017 Damir Kinzebulatov, U Laval, Qu´ ebec http://archimede.mat.ulaval.ca/pages/kinzebulatov 7 / 27

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend