damic at snolab
play

DAMIC at SNOLAB Alvaro E Chavarria University of Chicago for the - PowerPoint PPT Presentation

DAMIC at SNOLAB Alvaro E Chavarria University of Chicago for the DAMIC Collaboration 1 Outline Charge coupled devices (CCDs) as detectors for low-energy particles. Characterization of the DAMIC devices. DAMIC installation at SNOLAB.


  1. DAMIC at SNOLAB Alvaro E Chavarria University of Chicago for the DAMIC Collaboration 1

  2. Outline • Charge coupled devices (CCDs) as detectors for low-energy particles. • Characterization of the DAMIC devices. • DAMIC installation at SNOLAB. • Low-mass dark matter search results. • Background suppression techniques. • Future of the DAMIC program. 2

  3. Charge coupled device σ xy σ xy ~ z y Pixel array x z y x x Free 675 µm charge ± carriers Ionizing Device is “exposed,” collecting charge particle z until user commands readout. Fully depleted substrate Readout can be slow / non-destructive : very low noise (few e - ). Silicon band-gap: 1.2 eV. 15 µm Mean energy for 1 e-h pair: 3.8 eV. 3

  4. Particle tracks 6 keV front X-ray? n, WIMP? Diffusion e limited 50 pixels Back α 6 keV back μ DAMIC CCD: 15x15 µm 2 pixels Front 2080 4180 4190 4200 4210 4220 1000 1 2000 3000 2 4000 5000 3 6000 7000 4 8000 9000 5 10000 5 10 15 20 25 30 5 10 15 20 25 30 Energy measured by pixel / keV Energy measured by pixel / keV 4

  5. Device performance 5 Linearity demonstrated for signals <10 e - . 10 Image Blank Gaussian fit 1.08 ) 4 10 ee X-rays mean = -0.003 0.001 k(E) / k(5.9 keV � 1.06 Entries per bin Optical photons = 1.827 0.001 � � 1.04 3 10 1.02 1 2 10 White readout noise 0.98 0.96 10 <2 e - RMS ~ 7 eV ee 1 − 10 1 10 Ionization signal [keV ] ee 1 �� ��������� ��� � Characterization of Compton � 10 0 10 20 30 40 - Pixel Value [e ] ��� background at low energies �������� �� �� � � � ���� ������� ������������� ���� ���������� ������ �� ������ ���� ��� � � � ����� ���� Si K-shell ���� ���� ���� ���� Si L-shell ���� ���� ���� ���� ��� ��� arXiv:1706.06053 ��� ���� ��� ���� ��� ���� ��� ���� ��� � ��� � ��� � ��� � ��� � � ����� 5

  6. Nuclear recoil response a) Cross-section of setup b) 124 Sb- 9 Be source detail 3 He counter 24 keV Vacuum chamber 2.75 cm BeO cap neutrons Source BeO cylinder from 20 cm Activated CCD 9 Be( γ ,n) Lead shielding antimony rod reaction BeO base Table Table 10 Dougherty (1992) ] 1000 -1 Data - full BeO ) Gerbier et al. (1990) ee Number of nuclear recoils [(10 eV Zecher et al. (1990) Best-fit with Monte Carlo spectrum 124 9 Sb- Be (2016) 800 Antonella (2017) Lindhard, k=0.15 Single-recoil spectrum ] 2 � / ndf 142 / 154 ee 600 1 Prob 0.74 [keV very similar to signal -1 f (0.06) 0.63 0.01 � PRD94 082007 from 3 GeV WIMP. -1 f (0.3) 1.94 0.02 � JINST12 P06014 400 e f(3.2) End-point = 3.2 keV r 0.61 0.02 � E y offset 1.4 � 1.0 Calibration down 200 to 60 eV ee . 1 − 10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1 10 E [keV ] E [keV ] e r ee nr 6

  7. 2 km underground 7

  8. SNOLAB Installation 5.8 g 16 Mpix CCD Poly- 6 cm VIB ethylene Lead Kapton Copper Lead block Kapton signal cable module signal cable Cu box with CCDs J. Zhou Cu vacuum vessel 8

  9. WIMP search Elastic scattering of WIMPs with silicon nuclei. Recoil spectrum 2D Gaussian in Si target distribution of free charge on pixel array. 2 All data 1 × 1 1 × 100 Surface (sim) 1.8 candidates 1.6 1.4 1.2 σ xy [pix] 1 0.8 0.6 0.4 Measure E and σ xy 0.2 for every event. 0 0 1 2 3 4 5 6 7 8 9 10 0 4 8 12 16 E [keV ee ] Entries 9

  10. WIMP search 0.6 kg days of data with test devices 0.9 0.8 at SNOLAB. 0.7 Detection efficiency ~ 30 dru total background. 0.6 -36 10 0.5 WIMP-nucleon cross-section [cm ] This work 2 PRD94 082006 0.6 kg d -37 0.4 10 Signal (1 × 1) 0.3 Signal (1 × 100) -38 10 0.2 Background (1 × 1) Background (1 × 100) 0.1 -39 10 CRESST II 2015 - 52 kg d 0 DAMA/Na 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 E [keV ] -40 ee 10 Observed spectrum in fiducial region CDMSLite - 70 kg d -41 10 3 -42 10 2.5 LUX - 14 ton d CDMS-II Si - 140 kg d ee Events per 100 eV -43 2 10 1 10 -2 WIMP Mass [GeV c ] 1.5 Spectrum consistent with Compton 1 scattered electrons in fiducial region: 0.5 No WIMP signal. 0 0 1 2 3 4 5 6 7 E [keV ] 10 ee

  11. Hidden photon search ~1 week of data with 1 CCD. Absorption Leakage current 4 e - mm -2 d -1 . Si bulk of hidden- �� � �� 675 µm photon - e - - - Ionization PRL118 141803 - dark �� � �� matter. �� � �� Hidden Photon �� � �� � �� � ������� ������� � ����� ����� �� � �� ����� ���� �� � ���� ��� � � ����� ���� ������� ���� � ��� � � � � � � � ������ �� ������ ������� ���� �� � �� �� � ��� � � ����� ������� ������� � ��� � � � � � � � ����� ����� ���� ���������� �� � �� �� � �� � �� � � � ���� � � � �� � Pixel distribution consistent with white �� � � noise + uniform leakage current. ���� ���� ��� � �� ��� ��� ��� � ����� 11

  12. ββ coincidences 57 days of data in 1 CCD: 64 keV 1.2 MeV 210 Pb 210 Bi 210 Po 210 Pb < 37 kg -1 d -1 τ 1/2 = 5 d (95% C.L.) 0.22 MeV 1.7 MeV +110 32 Si = 80 kg -1 d -1 32 Si 32 P 32 S -65 (95% C.L.) τ 1/2 = 14 d 32 Si - 32 P candidate JINST 10 P08014 E 1 = 114.5 keV Cluster #79 Δ t = 35 days (x o , y o ) Decay point E 2 = 328.0 keV 12

  13. DAMIC100 • Seven CCDs (~40 g) running at SNOLAB since Jan 2017 . • Already have ~6 kg-day of data with 5-15 dru total background rate. Analysis ongoing. DAMIC-1K 6k x 6k pixels, 1 mm thick ≈ 20 g / CCD ≈ 50 CCDs / 1 Kg • A 1 kg detector built with existing technology. DAMIC100 • 4k x 4k Sub-e - resolution, 2 e - threshold. • Background improvement to 0.1 dru: -Improved design for background suppression. Silicon wafer -Strict handling and packaging procedures. -Baking of wafers during/after fabrication to remove 3 H. 13

  14. SENSEI LDRD at Fermilab (PI Tiffenberg): Skipper CCDs (LBNL design) successfully tested with sub e - noise. X-ray spectroscopy demonstrated. arXiv:1706.00028 Non destructive “skipper” readout : Perform N uncorrelated measurements of the same pixel. Noise decreases by ~1/ √ N . Technology will allow 2 e - (few eV) threshold. Reference Δ V Signal Measure Δ V N times. 14

  15. DAMIC Program DM-nucleus SI coherent scattering DM-e Scattering via Ultra-light Hidden Photon 35 − 10 2 - WIMP-nucleon cross-section / cm - 36 − 10 - − 37 10 - - 38 − CRESST(2015) 10 52 kg-d - 100 g y, 5 dru, 2e - threshold ) 6 1 0 σ n [cm 2 ] 2 ( 39 ] − C 10 I M - A d D - g k 6 . 0 ) 7 DAMIC-1K - 1 kg y (2020) 1 0 2 - ( 0 0 1 [ C − 40 I M d 10 A - D g k 3 1 - CDMSLite(2015) 41 − - 10 70 kg-d - 42 − 10 - CDMSII-Si JHEP05(2016)046 (2013) DAMIC1K(2020) - − 43 10 1 kg-y LUX(2015) 0.1 dru, 2 e - thres. - 44 − 10 1 10 [ ] m [GeV] χ Also best limits for absorption of hidden photon dark matter. 15

  16. DAMIC Program Direct search: DM-e Scattering via heavy Hidden Photon - m A 0 > 2 M χ Ionization χ χ produced by - g D dark matter - A ’ - electron / e ✏ nucleus - scattering. e − e − ] p p - Accelerators: JHEP05(2016)046 [ - - - DAMIC-1K - 1 kg y (2020) = Look for electron’s missing - momentum ( LDMX ) or χ [ ] interacting directly ( BDX ). 16

  17. Conclusion • CCDs are low-radioactivity, low-noise particle detectors whose response to ionizing radiation has been thoroughly characterized . • DAMIC has placed competitive dark matter search results (WIMPs + hidden photons) with early R&D data. • Established discrimination techniques to measure and suppress backgrounds (esp. dominant 32 Si). • Ongoing R&D efforts for a DAMIC-1K : 50 skipper CCDs for a 1 kg detector with 2 e - threshold to search for low-mass dark matter by DM-nucleon and DM-electron scattering. 17

  18. Thank you! 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend