searching for low mass dark matter with the supercdms
play

Searching for Low Mass Dark Matter with the SuperCDMS SNOLAB - PowerPoint PPT Presentation

Searching for Low Mass Dark Matter with the SuperCDMS SNOLAB Detectors Bruno Serfass UC Berkeley PM2018 - 14th Pisa Meeting on Advanced Detectors SuperCDMS: Searching for Dark Matter For the past 25 years, the


  1. Searching for Low Mass Dark Matter with the SuperCDMS SNOLAB Detectors Bruno ¡Serfass ¡ UC ¡Berkeley ¡ PM2018 - 14th Pisa Meeting on Advanced Detectors

  2. SuperCDMS: Searching for Dark Matter Ø For the past 25 years, the CDMS/SuperCDMS Collaboration has been searching for Dark Matter primarily in the form of WIMPs Ø SuperCDMS detectors were in operation at Soudan, Minnesota, until 2015. New detectors will run deeper, in SNOLAB, Canada (operation starting in 2020). �� - �� �� - � DAMIC ¡ Recent SuperCDMS Limits on ��������� �� � �������� �� � �� - �� ������ - �� �� - � � ���� ������ - ������� σ �� [ �� � ] � ���� ������ - ������� σ �� [ �� ] WIMP-Nucleon cross section: � � � � �� - �� �� - � � � � �� - �� �� - � • Low-Mass Dark Matter Search with CDMSlite. Phys. Rev. D 97 (2018) �� - �� �� - � • �� - �� �� - � Results from the Super Cryogenic Dark Matter Search Experiment LUX ¡ �� - �� �� - � at Soudan Phys.Rev.Lett. 120 (2018) �� - �� �� - � • More results coming soon… �� - �� � � � �� ���� ������ ���� [ ��� / � � ] 2 ¡

  3. SuperCDMS: Searching for Dark Matter WIMPs not the only candidate, many well motivated DM models at light mass ¡ 3 ¡ (“US Cosmic Visions: New Ideas in Dark Matter”: 1707.04591)

  4. SuperCDMS: Searching for Dark Matter • SuperCDMS SNOLAB Science Goals: Search for DM at lower Mass: 300 MeV < M DM < 10GeV • Can we probe for DM at even lower masses with SuperCDMS detector technology? ~keV < M DM < 300 MeV 4 ¡ (“US Cosmic Visions: New Ideas in Dark Matter”: 1707.04591)

  5. <latexit sha1_base64="y7iQk91HX3K5CrB5gJXB4E/f2CU=">ACPHicbVC7SgNBFJ31bXxFLW0Gg2AVdhdBLYTgA2yUCIkRsjHMTu7qkNkHM7NCGPbHbPwHOzsbCxVbayfZLTxwMDhnHO5c4+fcCaVb9YU9Mzs3PzC4ulpeWV1bXy+sa1jFNBoUljHosbn0jgLIKmYorDTSKAhD6Hlt8/GfqtBxCSxVFDRLohOQuYgGjRBmpW254p8AVwWf4CHuBIFQXQv1Wu1mXzR1ZdZhj0OUkoW4iI2Mk4vsmHsIWdupvNwt1yxq/YIeJI4BamgAvVu+dnrxTQNIVKUEynbjp2ojiZCMcohK3mphITQPrmDtqERCUF29Oj6DO8YpYeDWJgXKTxSf09oEko5CH2TDIm6l+PeUPzPa6cqOhoFiWpgojmi4KUYxXjYZW4xwRQxQeGECqY+Sum98SUo0zhJVOCM37yJGm61cOqc7VXqR0XbSygLbSNdpGD9lENnaM6aiKHtErekcf1pP1Zn1aX3l0yipmNtEfWN8/f7it7A=</latexit> <latexit sha1_base64="y7iQk91HX3K5CrB5gJXB4E/f2CU=">ACPHicbVC7SgNBFJ31bXxFLW0Gg2AVdhdBLYTgA2yUCIkRsjHMTu7qkNkHM7NCGPbHbPwHOzsbCxVbayfZLTxwMDhnHO5c4+fcCaVb9YU9Mzs3PzC4ulpeWV1bXy+sa1jFNBoUljHosbn0jgLIKmYorDTSKAhD6Hlt8/GfqtBxCSxVFDRLohOQuYgGjRBmpW254p8AVwWf4CHuBIFQXQv1Wu1mXzR1ZdZhj0OUkoW4iI2Mk4vsmHsIWdupvNwt1yxq/YIeJI4BamgAvVu+dnrxTQNIVKUEynbjp2ojiZCMcohK3mphITQPrmDtqERCUF29Oj6DO8YpYeDWJgXKTxSf09oEko5CH2TDIm6l+PeUPzPa6cqOhoFiWpgojmi4KUYxXjYZW4xwRQxQeGECqY+Sum98SUo0zhJVOCM37yJGm61cOqc7VXqR0XbSygLbSNdpGD9lENnaM6aiKHtErekcf1pP1Zn1aX3l0yipmNtEfWN8/f7it7A=</latexit> <latexit sha1_base64="y7iQk91HX3K5CrB5gJXB4E/f2CU=">ACPHicbVC7SgNBFJ31bXxFLW0Gg2AVdhdBLYTgA2yUCIkRsjHMTu7qkNkHM7NCGPbHbPwHOzsbCxVbayfZLTxwMDhnHO5c4+fcCaVb9YU9Mzs3PzC4ulpeWV1bXy+sa1jFNBoUljHosbn0jgLIKmYorDTSKAhD6Hlt8/GfqtBxCSxVFDRLohOQuYgGjRBmpW254p8AVwWf4CHuBIFQXQv1Wu1mXzR1ZdZhj0OUkoW4iI2Mk4vsmHsIWdupvNwt1yxq/YIeJI4BamgAvVu+dnrxTQNIVKUEynbjp2ojiZCMcohK3mphITQPrmDtqERCUF29Oj6DO8YpYeDWJgXKTxSf09oEko5CH2TDIm6l+PeUPzPa6cqOhoFiWpgojmi4KUYxXjYZW4xwRQxQeGECqY+Sum98SUo0zhJVOCM37yJGm61cOqc7VXqR0XbSygLbSNdpGD9lENnaM6aiKHtErekcf1pP1Zn1aX3l0yipmNtEfWN8/f7it7A=</latexit> <latexit sha1_base64="y7iQk91HX3K5CrB5gJXB4E/f2CU=">ACPHicbVC7SgNBFJ31bXxFLW0Gg2AVdhdBLYTgA2yUCIkRsjHMTu7qkNkHM7NCGPbHbPwHOzsbCxVbayfZLTxwMDhnHO5c4+fcCaVb9YU9Mzs3PzC4ulpeWV1bXy+sa1jFNBoUljHosbn0jgLIKmYorDTSKAhD6Hlt8/GfqtBxCSxVFDRLohOQuYgGjRBmpW254p8AVwWf4CHuBIFQXQv1Wu1mXzR1ZdZhj0OUkoW4iI2Mk4vsmHsIWdupvNwt1yxq/YIeJI4BamgAvVu+dnrxTQNIVKUEynbjp2ojiZCMcohK3mphITQPrmDtqERCUF29Oj6DO8YpYeDWJgXKTxSf09oEko5CH2TDIm6l+PeUPzPa6cqOhoFiWpgojmi4KUYxXjYZW4xwRQxQeGECqY+Sum98SUo0zhJVOCM37yJGm61cOqc7VXqR0XbSygLbSNdpGD9lENnaM6aiKHtErekcf1pP1Zn1aX3l0yipmNtEfWN8/f7it7A=</latexit> Elastic Nuclear Scattering Searching for dark matter with M DM >300MeV: Nuclear recoils Transfer of DM kinetic energy inefficient when M n >> M DM for elastic scatters χ 0 ¡ γ ¡ ∆ E = ∆ P 2 . 2 M 2 DM v 2 DM 2 M N M N 5 ¡

  6. Elastic Nuclear Scattering Searching for dark matter with M DM >300MeV: Nuclear recoils Ø The primary design driver for SuperCDMS and all Light χ 0 ¡ γ ¡ Mass experiments is Energy Sensitivity ¡ 6 ¡

  7. Inelastic Electron Scattering Ø To probe M DM <300MeV, we need to look DM DM for DM interactions with more efficiently hidden ! photon transfer kinetic energy to the target kinetic mixing photon è è Electron recoils e - e - Ø The inelastic electron recoil DM F DM µ 1 ê q 2 scattering rate depends strongly 10 - 32 10 - 33 He the size of the target material's XENON10 ER Ar 10 - 34 band gap Xe 10 - 35 Ge 10 - 36 Freeze - In è è Ge preferable s e @ cm 2 D 10 - 37 10 - 38 10 - 39 Ultra - light Dark Photon 10 - 40 Ø Sensitivity depends on threshold ¡ 10 - 41 10 - 42 è è Design driver: semiconductor 10 - 43 1 10 10 2 10 3 detector with sensitivity to m DM @ MeV D single electron-hole pairs (Essig ¡et ¡al ¡1108.5383) ¡ ¡

  8. Inelastic Electron Scattering Ø To probe M DM <300MeV, we need to look DM DM for DM interactions with more efficiently hidden ! photon transfer kinetic energy to the target kinetic mixing photon è è Electron recoils e - e - Ø The inelastic electron recoil DM scattering rate depends strongly the size of the target material's band gap è è Ge preferable Ø Sensitivity depends on threshold ¡ è è Design driver: semiconductor detector with sensitivity to single electron-hole pairs ¡ (Essig ¡et ¡al ¡ ¡1509.01598) ¡

  9. Dark Photon Absorption Ø Analogous to photoelectric absorption, but with a dark photon A' being absorbed Ø Detected through emission of phonons in semiconductor (ensures momentum conservation) Ø Expected signal: Peak at electron recoil energy corresponding to m A' ¡ Band ¡Diagram ¡for ¡Si ¡ Energy ¡[eV] ¡ Momentum ¡ ¡ ¡ 9 ¡

  10. SuperCDMS SNOLAB Detectors Ø High-purity Ge and Si crystals operated at 10’s of mK Ø Measure athermal phonon signal via transition edge sensor Ø Multiple channels give position information Ø Two types of detectors: • Interleaved Z-dependent Ionization and Phonon (iZIP): higher mass DM, optimized for background rejection • High-Voltage (CDMS-HV): lower mass DM, optimized for low threshold 100 ¡mm ¡ 100 ¡mm ¡ 33 ¡mm ¡ 33 ¡mm ¡ 10 ¡ Ge: 1.39 kg, Si: 0.61 kg

  11. iZIP Detectors • Simultaneously ¡measure ¡charge ¡and ¡phonon ¡ energy ¡from ¡dark ¡maCer ¡interacDons ¡ ¡ ¡ • For an electron recoil in Ge, an e-/h+ pair is produced for every 3.0 eV of recoil energy. Nuclear recoils are less efficient, by a factor of 2 to 10 above 1 keVr è è ER/NR discrimination via yield=Ionization E / Recoil E ¡ • Reject ¡surface ¡events ¡via ¡asymmetric ¡charge ¡ signal ¡from ¡interleaved ¡electrodes ¡ ¡ ¡ ¡ ¡ ¡ 11 ¡ (Soudan iZIP data ) ¡ surface-­‑event ¡misidenDcaDon ¡prob. ¡<10 -­‑5 ¡

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend