d
play

d Definite Integrals i E 2 Lectures a l l u d b Dr. - PowerPoint PPT Presentation

Section 14.7 d Definite Integrals i E 2 Lectures a l l u d b Dr. Abdulla Eid A . College of Science r D MATHS 104: Mathematics for Business II Dr. Abdulla Eid (University of Bahrain) Integrals 1 / 15 Definite Integral Recall:


  1. Section 14.7 d Definite Integrals i E 2 Lectures a l l u d b Dr. Abdulla Eid A . College of Science r D MATHS 104: Mathematics for Business II Dr. Abdulla Eid (University of Bahrain) Integrals 1 / 15

  2. Definite Integral Recall: The integral is used to find area under the curve over an interval [ a , b ] d i Idea: To cover the area by as many rectangles as possible and then we will E get better and better estimate if we increase the number of rectangles. a l l u Question: When will we get an exact estimate for the area? d b Answer: When the number of rectangle → ∞ . In that case, we write the A area by . � b r D Area = a f ( x ) dx This integral is called definite integral. The number a and b are called the lower limit and upper limit of integration respectively. Dr. Abdulla Eid (University of Bahrain) Integrals 2 / 15

  3. The Fundamental Theorem of Calculus Question: How to evaluate the definite integral? d Theorem 1 i E If f is continuous on the interval [ a , b ] and F is the anti-derivative of f , a then l l  u  b � b d a f ( x ) dx = b F ( x ) = F ( b ) − F ( a )   A ���� antiderivative a . r D 1 Definite integral � b a f ( x ) dx gives a number represents the area. 2 Indefinite integral � f ( x ) dx gives a function . Dr. Abdulla Eid (University of Bahrain) Integrals 3 / 15

  4. Example 2 Find � 2 − 1 ( x 3 − 6 x ) dx . d i E Solution: 1 a l l u � 2 � 2 d � 1 � 2 − 1 ( x 3 − 6 x ) dx = − 1 ( x 3 − 6 x ) dx = 4 x 4 − 3 x 2 b A − 1 � 1 � � 1 � = − 21 . 4 ( 2 ) 4 − 3 ( 2 ) 2 4 ( − 1 ) 4 − 3 ( − 1 ) 2 r − D 4 1 Direct evaluation Dr. Abdulla Eid (University of Bahrain) Integrals 4 / 15

  5. Example 3 1 6 √ x dx . Find � 9 d i E Solution: 2 a l l u d � 9 � 9 � � 9 1 6 √ x dx = 62 b 1 3 2 dx = 1 6 x 3 x 2 A 1 � � � � . 3 3 4 ( 9 ) − 4 ( 1 ) = 104 r 2 2 D 2 Direct evaluation Dr. Abdulla Eid (University of Bahrain) Integrals 5 / 15

  6. Exercise 4 Find � 1 − 1 ( x + 1 ) 2 dx . d i E a l l u d b A . r D Dr. Abdulla Eid (University of Bahrain) Integrals 6 / 15

  7. Example 5 Find � 2 x 5 + 3 x 3 dx . x 4 d 1 i E Solution: 3 a l l u x 5 + 3 x 3 � 2 � 2 d � 1 � 2 1 x + 3 2 x 2 + 3 ln | x | b dx = x dx = x 4 A 1 1 � 1 � � 1 � = 3 . 2 ( 2 ) 2 + 3 ln 2 2 ( 1 ) 2 + 3 ln 1 r − 2 + 3 ln 2 D 3 Direct evaluation Dr. Abdulla Eid (University of Bahrain) Integrals 7 / 15

  8. Example 6 (Substitution and definite integrals) Find � 1 0 x 2 e − x 3 dx Solution: 4 Since this is not a basic integral, we are looking for a good substitution. We are looking for an inner function with almost the d derivative is somewhere in the integral. Let i E a l u = − x 3 l u d du du = − 3 x 2 dx → dx = b − 3 x 2 A if x = 0,then u = 0 . r D if x = 1,then u = − 1 � − 1 � − 1 � 1 0 x 2 e − x 3 dx = du 1 e u du x 2 e u − 3 x 2 = − 3 0 0 � − 1 � − 1 � − 1 � � − 1 � = − 1 3 e − 1 + 1 3 e − 1 3 e 0 3 e u = = = − 3 0 4 Substitution and then evaluation Dr. Abdulla Eid (University of Bahrain) Integrals 8 / 15

  9. Example 7 (Substitution and definite integrals) Find � 4 − 5 x √ x 2 + 9 dx 0 Solution: 5 Since this is not a basic integral, we are looking for a good substitution. We are looking for an inner function with almost the d derivative is somewhere in the integral. Let i E a l u = x 2 + 9 l u d du = 2 x dx → dx = du b A 2 x if x = 0,then u = 9 . r D if x = 4,then u = 25 � 4 � 25 � 25 − 5 x − 5 x 2 x = − 5 1 du √ dx = √ u √ u du x 2 + 9 2 0 9 9 � 25 = − 5 � � 25 ( u ) − 1 1 2 du = − 5 u 2 2 9 9 � � � � 1 1 = − 5 ( 25 ) − − 5 ( 9 ) = − 10 2 2 Dr. Abdulla Eid (University of Bahrain) Integrals 9 / 15

  10. Example 8 (Old Final Exam Question) If � 3 a ( 3 x 2 + 2 x ) dx = 36, then find the value of a . d Solution: 6 i E a � 2 � 3 l a ( 3 x 2 + 2 x ) dx = a ( 3 x 2 + 2 x ) dx = l x 3 + x 2 � 3 � u 36 = d a b � a 3 + a 2 � 36 = ( 36 ) − A 36 = − a 3 − a 2 + 36 . r 0 = − a 3 − a 2 D 0 = − a 2 ( a + 1 ) a = 0 or a = − 1 6 Finding limit of integration Dr. Abdulla Eid (University of Bahrain) Integrals 10 / 15

  11. Example 9 (Old Final Exam Question) If � 2 a ( x + 1 ) 2 dx = 9, then find the value of a . Solution: 7 d i E � 2 � 2 � 1 � 2 a a ( x 2 + 2 x + 1 ) dx = 3 x 3 + x 2 + x a ( x + 1 ) 2 dx = 9 = l l u a d � 26 � � 1 � 3 a 3 + a 2 + a b 9 = − A 3 9 = − 1 3 a 3 − a 2 − a + 26 . r D 3 0 = − 1 3 a 3 − a 2 − a + − 2 3 a = − 2 7 Finding limit of integration Dr. Abdulla Eid (University of Bahrain) Integrals 11 / 15

  12. Properties of Integration Recall: Definite integrals compute the area under the curve, i.e., � b Area = a f ( x ) dx d i E 1 � b a [ c · f ( x )] dx = c · � b a f ( x ) dx . a l l 2 � b a [ f ( x ) + g ( x )] dx = � b a f ( x ) dx + � b u a g ( x ) dx . d b 3 � a A a f ( x ) dx = 0. . r 4 � b a f ( x ) dx = − � a D b f ( x ) dx . 5 � b a f ( x ) dx = � c a f ( x ) dx + � b c g ( x ) dx . 6 If f ( x ) ≤ g ( x ) on [ a , b ] , then � b a f ( x ) dx ≤ � b a g ( x ) dx . Dr. Abdulla Eid (University of Bahrain) Integrals 12 / 15

  13. Example 10 (Old Final Exam Question) If � 2 0 f ( x ) dx = 3, � 2 0 g ( x ) dx = 2, then find � 2 d 0 [ 4 f ( x ) + g ( x )] dx . i E Solution: 8 a l l � 2 � 2 u � 2 d 0 [ 4 f ( x ) + g ( x )] = 4 0 [ f ( x ) dx ] + 0 [ g ( x )] dx b A = 4 ( 3 ) + 2 . r = 14 D 8 Properties of integral Dr. Abdulla Eid (University of Bahrain) Integrals 13 / 15

  14. Exercise 11 If � 5 1 f ( x ) dx = 3, � 3 1 f ( x ) dx = 1, and � 3 1 h ( x ) dx = 5 then find a 1 � 5 1 − 2 f ( x ) dx . 2 � 3 1 [ f ( x ) + h ( x )] dx . d 3 � 3 i 1 [ 2 f ( x ) − 5 h ( x )] dx . E 4 � 1 a 5 f ( x ) dx . l l 5 � 5 u 3 f ( x ) dx . d b 6 � 1 3 [ h ( x ) − f ( x )] dx . A 7 � 3 . 3 [ h ( x ) − f ( x )] dx . r D a Properties of integral Dr. Abdulla Eid (University of Bahrain) Integrals 14 / 15

  15. Example 12 (Old Final Exam Question) Given  4 x + 2, x < 2   3 x 2 − 2, f ( x ) = 2 ≤ x < 6 d  i  106, x ≥ 6 E a Evaluate � 4 l 0 f ( x ) dx l u d b Solution: 9 A � 4 � 2 � 4 0 f ( x ) dx = . 0 f ( x ) dx + 2 f ( x ) dx r D � 2 � 4 2 3 x 2 − 2 dx = 0 4 x + 2 dx + 2 x 2 + 2 x x 3 − 2 x � � 2 � � 4 = 0 + 2 = 16 + 56 − 4 = 68 9 Properties of integration Dr. Abdulla Eid (University of Bahrain) Integrals 15 / 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend