gauss composition and integral arithmetic invariant theory
play

Gauss composition and integral arithmetic invariant theory David - PowerPoint PPT Presentation

Gauss composition and integral arithmetic invariant theory David Zureick-Brown (Emory University) Anton Gerschenko (Google) Connections in Number Theory Fall Southeastern Sectional Meeting University of North Carolina at Greensboro,


  1. Gauss composition and integral arithmetic invariant theory David Zureick-Brown (Emory University) Anton Gerschenko (Google) Connections in Number Theory Fall Southeastern Sectional Meeting University of North Carolina at Greensboro, Greensboro, NC Nov 8, 2014

  2. Sums of Squares Recall ( p prime) p = x 2 + y 2 if and only if p = 1 mod 4 or p = 2. For products ( x 2 + y 2 )( z 2 + w 2 ) = ( xz + yw ) 2 + ( xw − yz ) 2 David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 2 / 26

  3. Sums of Squares Recall ( p prime) p = x 2 + dy 2 if and only if [more complicated condition] . Example p = x 2 + 2 y 2 for some x , y ∈ Z if and only if p = 2 or p = 1 , 3 mod 8. Example p = x 2 + 3 y 2 for some x , y ∈ Z if and only if p = 3 or p = 1 mod 3. David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 3 / 26

  4. Sums of Squares Recall ( p prime) p = x 2 + dy 2 if and only if [more complicated condition] . For products ( x 2 + dy 2 )( z 2 + dw 2 ) = ( xz + dyw ) 2 + d ( xw − yz ) 2 David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 4 / 26

  5. Integers represented by a quadratic form General quadratic forms (initiated by Lagrange) Q ( x , y ) ∈ Z [ x , y ] 2 Recall ( p prime) p = Q ( x , y ) for some x , y ∈ Z if and only if [more complicated condition] . Composition law? Q ( x , y ) Q ( z , w ) = Q ( a , b ) David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 5 / 26

  6. Sums of Squares (Euler’s conjecture) Example p = x 2 + 14 y 2 for some x , y ∈ Z if and only if � − 14 � = − 1 and p ( z 2 + 1) 2 = 8 has a solution mod p . Example p = 2 x 2 + 7 y 2 for some x , y ∈ Z if and only if � − 14 � = − 1 and p ( z 2 + 1) 2 − 8 factors into two irreducible quadratics mod p . David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 6 / 26

  7. Integers represented by a quadratic form (equivalence) Equivalence of forms 1 Q ( x , y ) ∈ Z [ x , y ] 2 2 M ∈ SL 2 ( Z ) , Q M ( x , y ) := Q ( ax + by , cx + dy ) 3 n ∈ Z is represented by Q iff it is represented by Q M . 4 Reduced forms: | b | ≤ a ≤ c and b ≥ 0 if a = c or a = | b | . Example 29 x 2 + 82 xy + 58 y 2 ∼ x 2 + y 2 . David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 7 / 26

  8. Gauss composition Theorem (Gauss composition) The reduced, non-degenerate positive definite forms of discriminant − D √ form a finite abelian group, isomorphic to the class group of Q ( − D ) . Example ( D = − 56) x 2 + 14 y 2 , 2 x 2 + 7 y 2 , 3 x 2 ± 2 xy + 5 y 2 Remark 1 Gauss’s proof was long and complicated; difficult to compute with. 2 Later reformulated by Dirichlet. 3 Much later reformulated by Bhargava. David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 8 / 26

  9. Bhargava cubes e f � � � � a b g h � � � � c d David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 9 / 26

  10. Bhargava cubes e f � � � � a b g h � � � � c d 1 a , b , d , c , e , f , h , g ∈ Z , 2 Cube is really an element of Z 2 ⊗ Z 2 ⊗ Z 2 , with a natural SL 2 ( Z ) 3 action David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 10 / 26

  11. Gauss composition via Bhargava cubes e f � � � � a b g h � � � � c d �� a b � e f � � � Q 1 ( x , y ) := − Det x − y d c h g David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 11 / 26

  12. Gauss composition via Bhargava cubes e f � � � � a b g h � � � � c d Q i ( x , y ) := − Det ( M i x − N i y ) David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 12 / 26

  13. Gauss composition via Bhargava cubes e f � � � � a b g h � � � � c d Q i ( x , y ) := − Det ( M i x − N i y ) David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 13 / 26

  14. Bhargava’s theorem e f � � � � a b g h � � � � c d Q i ( x , y ) := − Det ( M i x − N i y ) Theorem (Bhargava) Q 1 ( x , y ) + Q 2 ( x , y ) + Q 3 ( x , y ) = 0 David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 14 / 26

  15. Lots of parameterizations Example binary cubic forms ↔ cubic fields pairs (ternary, quadratic) forms ↔ quartic fields quadruples of quinary ↔ quintic fields alternating bilinear forms binary quartic forms ↔ 2-Selmer elements of Elliptic curves Remark 1 14 more (Bhargava) 2 many more (Bhargava-Ho) David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 15 / 26

  16. Representation theoretic framework Space of forms 1 The space V of binary quadratic forms is 3-dimensional vector space (resp. R -module). 2 V = Sym 2 C 2 Representations SL 2 ( C ) � Sym 2 C 2 SL 2 ( R ) � Sym 2 R 2 SL 2 ( Z ) � Sym 2 Z 2 etc.. Invariants C -Invariants : two non-zero forms f , g are C equivalent iff ∆( f ) = ∆( g ). 1 Z -Invariants : ∆( f ) = ∆( g ) �⇒ Z equivalence. 2 David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 16 / 26

  17. Representation theoretic framework Invariants C -Invariants : two non-zero forms f , g are C equivalent iff ∆( f ) = ∆( g ). 1 Z -Invariants : ∆( f ) = ∆( g ) �⇒ Z equivalence. 2 Example ( D = − 14 · 4) x 2 + 14 y 2 is not equivalent to 2 x 2 + 7 y 2 . Fundamental object of study 1 SL 2 ( Z )-orbits of an SL 2 ( Q )-orbit David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 17 / 26

  18. General representation theoretic framework Framework 1 V = free R module 2 G � V 3 R → R ′ ring extension 4 v ∈ V ( R ) Goal Understand the G ( R )-orbits of the G ( R ′ )-orbit of v David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 18 / 26

  19. Arithmetic invariant theory “Is every group a cohomology group H 1 et (Spec Z , Res O / Z G m ) ´ David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 19 / 26

  20. Arithmetic invariant theory “Is every group a cohomology group or a Manjul shaped asteroid that fell from the sky?” – Jordan Ellenberg H 1 et (Spec Z , Res O / Z G m ) ´ David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 19 / 26

  21. Arithmetic invariant theory “Is every group a cohomology group or a Manjul shaped asteroid that fell from the sky?” – Jordan Ellenberg H 1 et (Spec Z , Res O / Z G m ) ´ David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 19 / 26

  22. Bhargava–Gross–Wang Setup 1 f , g ∈ V ( Q ) 2 M ∈ G ( Q ) s.t. g = M · f 3 σ ∈ Gal( Q / Q ) 4 Then g = M σ · f , so f = M − 1 M σ · f , i.e. M − 1 M σ ∈ Stab f Cohomological framework The map Gal( Q / Q ) → Stab f ; σ �→ M − 1 M σ is a cocycle , and gives an element of H 1 (Gal( Q / Q ) , Stab f ). David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 20 / 26

  23. Integral arithmetic invariant theory Remark 1 AIT only works for fields; can’t recover Gauss composition 2 Analogue of Galois cohomology is ´ etale cohomology. David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 21 / 26

  24. Integral arithmetic invariant theory – setup Setup 1 S any base (e.g. Z ); 2 G / S any group scheme (not necessarily smooth, or even flat); 3 X (usually a vector space); 4 G � X an action. Example (“Gauss”) G = SL 2 , Z , acting on X = Sym 2 A 2 Z David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 22 / 26

  25. Main Theorem Theorem (Giraud; Geraschenko-ZB) Let v ∈ X ( S ) . Then there is a functorial long exact sequence (of groups and pointed sets) g �→ g · v → Orbit v ( S ) → H 1 ( S , Stab v ) → H 1 ( S , G ) . 0 → Stab v ( S ) → G ( S ) − − − − If Stab v is commutative, then Orbit v ( S ) / G ( S ) ∼ H 1 ( S , Stab v ) → H 1 ( S , G ) � � = ker is a group. Remark The image Orbit v ( S ) / G ( S ) of X ( S ) is the set of G ( S ) equivalence classes of v ′ ∈ Orbit v ( S ) in the same local orbit as v . David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 23 / 26

  26. Example: Gauss composition revisited Example (“Gauss”) G = SL 2 , Z acts on X = Sym 2 A 2 Z ; Stab v is a non-split torus (thus commutative ). Let f ∈ X ( Z ) be a primitive (non-zero mod all p ) integral quadratic form. g �→ g · f → Orbit f ( Z ) → H 1 ( Z , Stab v ) → H 1 ( Z , SL 2 ) . 0 → Stab v ( Z ) → SL 2 ( Z ) − − − − Remark 1 H 1 ( Z , SL 2 ) = 0 (this is Hilbert’s theorem 90). 2 Orbit f ( Z ) / SL 2 ( Z ) = integral equivalence classes of primitive forms with the same discriminantn. H 1 ( Z , Stab v ) ∼ = Orbit f ( Z ) / SL 2 ( Z ). 3 = Pic Z [(∆ f + √ ∆ f ) / 2] = Cl Q [ √ ∆ f ]. H 1 ( Z , Stab v ) ∼ 4 David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 24 / 26

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend