multiplicative invariant theory
play

Multiplicative Invariant Theory Workshop Noncommutative Invariant - PowerPoint PPT Presentation

Multiplicative Invariant Theory Workshop Noncommutative Invariant Theory U Washington, Seattle 05/27/2012 Jessie Hamm Temple University, Philadelphia Special Thanks to Dr. Martin Lorenz Overview Part I: Introduction Part II: Regularity


  1. Multiplicative Invariant Theory Workshop “Noncommutative Invariant Theory” U Washington, Seattle 05/27/2012 Jessie Hamm Temple University, Philadelphia Special Thanks to Dr. Martin Lorenz

  2. Overview Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property ■ Introduction to multiplicative invariants: definitions, examples, . . . Multiplicative Invariant Theory Seattle 05/27/2012 – slide 2

  3. Overview Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property ■ Introduction to multiplicative invariants: definitions, examples, . . . ■ Regularity: reflection groups and semigroup algebras Multiplicative Invariant Theory Seattle 05/27/2012 – slide 2

  4. Overview Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property ■ Introduction to multiplicative invariants: definitions, examples, . . . ■ Regularity: reflection groups and semigroup algebras ■ The Cohen-Macaulay property: reminders on CM rings, some results on multiplicative invariants, and some problems Multiplicative Invariant Theory Seattle 05/27/2012 – slide 2

  5. Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property Part I: Introduction

  6. k k k k k k k k Multiplicative invariants Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property Given : a group G and a G -lattice L ∼ Z n ; so = ■ G → GL( L ) ∼ = GL n ( Z ) an integral representation of G Multiplicative Invariant Theory Seattle 05/27/2012 – slide 4

  7. k k Multiplicative invariants Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property Given : a group G and a G -lattice L ∼ Z n ; so = ■ G → GL( L ) ∼ = GL n ( Z ) Choose a base ring k and form the group algebra ■ x m x m ′ = x m + m ′ k x m ∼ � k [ x ± 1 1 , . . . , x ± 1 k [ L ] = n ] , = m ∈ L The G -action on L extends uniquely to a “multiplicative” or g ( x m ) = x g ( m ) k [ L ] : “exponential” action on the k -algebra Multiplicative Invariant Theory Seattle 05/27/2012 – slide 4

  8. Multiplicative invariants Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property Given : a group G and a G -lattice L ∼ Z n ; so = ■ G → GL( L ) ∼ = GL n ( Z ) Choose a base ring k and form the group algebra ■ x m x m ′ = x m + m ′ k x m ∼ � k [ x ± 1 1 , . . . , x ± 1 k [ L ] = n ] , = m ∈ L The G -action on L extends uniquely to a “multiplicative” or g ( x m ) = x g ( m ) k [ L ] : “exponential” action on the k -algebra ■ k [ L ] G = { f ∈ k [ L ] | g ( f ) = f ∀ g ∈ G } = ? Problem: Multiplicative Invariant Theory Seattle 05/27/2012 – slide 4

  9. Example #1 Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property G = � g | g 2 = 1 � Multiplicative inversion in rank 2 : k = L = Z e 1 ⊕ Z e 2 ( Z ) action: g ( e i ) = − e i Multiplicative Invariant Theory Seattle 05/27/2012 – slide 5

  10. Example #1 Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property G = � g | g 2 = 1 � Multiplicative inversion in rank 2 : k = L = Z e 1 ⊕ Z e 2 ( Z ) action: g ( e i ) = − e i Putting x i = x e i we have: Z [ x ± 1 1 , x ± 1 with g ( x i ) = x − 1 Z [ L ] = 2 ] i Multiplicative Invariant Theory Seattle 05/27/2012 – slide 5

  11. Example #1 Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property G = � g | g 2 = 1 � Multiplicative inversion in rank 2 : k = L = Z e 1 ⊕ Z e 2 ( Z ) action: g ( e i ) = − e i Putting x i = x e i we have: Z [ x ± 1 1 , x ± 1 with g ( x i ) = x − 1 Z [ L ] = 2 ] i Straightforward calculation � Z [ L ] G = Z [ ξ 1 , ξ 2 ] ⊕ η Z [ ξ 1 , ξ 2 ] ξ i = x i + x − 1 i η = x 1 x 2 + x − 1 1 x − 1 2 ηξ 1 ξ 2 = η 2 + ξ 2 1 + ξ 2 2 − 4 Multiplicative Invariant Theory Seattle 05/27/2012 – slide 5

  12. Example #1 Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property G = � g | g 2 = 1 � Multiplicative inversion in rank 2 : k = L = Z e 1 ⊕ Z e 2 ( Z ) action: g ( e i ) = − e i Z [ L ] G ∼ Z [ x, y, z ] / ( x 2 + y 2 + z 2 − xyz − 4) = Hence: Multiplicative Invariant Theory Seattle 05/27/2012 – slide 5

  13. Example #1 ′ : linear analog Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property G = � g | g 2 = 1 � Linear inversion in rank 2 : L = Z e 1 ⊕ Z e 2 action: g ( e i ) = − e i Multiplicative Invariant Theory Seattle 05/27/2012 – slide 6

  14. Example #1 ′ : linear analog Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property G = � g | g 2 = 1 � Linear inversion in rank 2 : L = Z e 1 ⊕ Z e 2 action: g ( e i ) = − e i S ( L ) = Z [ x 1 , x 2 ] with g ( x i ) = − x i Now: Multiplicative Invariant Theory Seattle 05/27/2012 – slide 6

  15. Example #1 ′ : linear analog Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property G = � g | g 2 = 1 � Linear inversion in rank 2 : L = Z e 1 ⊕ Z e 2 action: g ( e i ) = − e i S ( L ) = Z [ x 1 , x 2 ] with g ( x i ) = − x i Now: One obtains: S ( L ) G = Z [ ξ 1 , ξ 2 ] ⊕ η Z [ ξ 1 , ξ 2 ] ξ i = x 2 i η = x 1 x 2 η 2 = ξ 1 ξ 2 Multiplicative Invariant Theory Seattle 05/27/2012 – slide 6

  16. Example #1 ′ : linear analog Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property G = � g | g 2 = 1 � Linear inversion in rank 2 : L = Z e 1 ⊕ Z e 2 action: g ( e i ) = − e i Z [ L ] G ∼ Z [ x, y, z ] / ( z 2 − xy ) = Hence: Multiplicative Invariant Theory Seattle 05/27/2012 – slide 6

  17. Some Special Features Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property Back to general multiplicative actions: L a G -lattice a commutative base ring k k [ L ] the group algebra Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7

  18. Some Special Features Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property Multiplicative invariants have a Z -structure: k [ L ] G is given by the distinct orbit sums a k -basis of x m ′ � orb ( m ) := ( m ∈ L ) m ′ ∈ G ( m ) ⇓ k [ L ] G = Z [ L ] G k ⊗ Z Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7

  19. Some Special Features Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property It suffices to consider finite groups : each orb ( m ) is supported on L fin = { m ∈ L | [ G : G m ] < ∞} stabilizer of m ∈ L G acts on L fin through the finite quotient G = G/ Ker G ( L fin ) . Thus: k [ L ] G = k [ L fin ] G Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7

  20. Some Special Features Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property k [ L ] G is always affine/ In particular, k (Hilbert # 14 ok). Multiplicative Invariant Theory Seattle 05/27/2012 – slide 7

  21. Finite Linear Groups Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property Jordan (1880): GL n ( Z ) has only finitely many finite subgroups up to conjugacy. Multiplicative Invariant Theory Seattle 05/27/2012 – slide 8

  22. Finite Linear Groups Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property Jordan (1880): GL n ( Z ) has only finitely many finite subgroups up to conjugacy. there are only finitely many multiplicative invariant algebras � k [ L ] G (up to ∼ = ) with rank L bounded Multiplicative Invariant Theory Seattle 05/27/2012 – slide 8

  23. Finite Linear Groups Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property n # fin. G ≤ GL n ( Z ) # max’l G (up to conj.) (up to conj.) 1 2 1 2 13 2 3 73 4 4 710 9 5 6079 17 6 85311 39 Multiplicative Invariant Theory Seattle 05/27/2012 – slide 8

  24. Pioneers of MIT Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property Bourbaki : “Invariants exponentiels” (Chap. VI § 3 of Groupes et ■ alg` ebres de Lie , 1968) Z [Λ] W ∼ R ( g ) ∼ Z [ x 1 , . . . , x rank g ] = = where R ( g ) = representation ring of a semisimple Lie algebra g , Λ = weight lattice of g , and W = Weyl group. Multiplicative Invariant Theory Seattle 05/27/2012 – slide 9

  25. Pioneers of MIT Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property Bourbaki : “Invariants exponentiels” (Chap. VI § 3 of Groupes et ■ alg` ebres de Lie , 1968) Z [Λ] W ∼ R ( g ) ∼ Z [ x 1 , . . . , x rank g ] = = where R ( g ) = representation ring of a semisimple Lie algebra g , Λ = weight lattice of g , and W = Weyl group. ■ Steinberg, Richardson (1970s) Multiplicative Invariant Theory Seattle 05/27/2012 – slide 9

  26. Pioneers of MIT Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property Bourbaki : “Invariants exponentiels” (Chap. VI § 3 of Groupes et ■ alg` ebres de Lie , 1968) Z [Λ] W ∼ R ( g ) ∼ Z [ x 1 , . . . , x rank g ] = = where R ( g ) = representation ring of a semisimple Lie algebra g , Λ = weight lattice of g , and W = Weyl group. ■ Steinberg, Richardson (1970s) “ ∆ -methods” for group rings: Passman , Zalesski˘ ■ ı , Roseblade , Dan Farkas � “multiplicative invariants” (mid 1980s) Multiplicative Invariant Theory Seattle 05/27/2012 – slide 9

  27. Part I: Introduction Part II: Regularity Part III: The Cohen-Macaulay Property Part II: Regularity

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend