critical dynamics in driven dissipative bose einstein
play

Critical Dynamics in Driven-Dissipative Bose-Einstein Condensation - PowerPoint PPT Presentation

Critical Dynamics in Driven-Dissipative Bose-Einstein Condensation auber 1 and Sebastian Diehl 2 Uwe C. T Weigang Liu 1 1 Department of Physics, Virginia Tech, Blacksburg, Virginia, USA 2 Institute of Theoretical Physics, TU Dresden, Germany


  1. Critical Dynamics in Driven-Dissipative Bose-Einstein Condensation auber 1 and Sebastian Diehl 2 Uwe C. T¨ Weigang Liu 1 1 Department of Physics, Virginia Tech, Blacksburg, Virginia, USA 2 Institute of Theoretical Physics, TU Dresden, Germany Renormalization Methods in Statistical Physics and Lattice Field Theories Montpellier, 28 August 2015 Ref.: Phys. Rev. X 4 , 021010 (2014); arXiv:1312.5182

  2. Outline Experimental Motivation Langevin Description of Critical Dynamics Driven-Dissipative Bose–Einstein Condensation Relationship with Equilibrium Critical Dynamics Scaling Laws and Critical Exponents Onsager–Machlup Functional Janssen–De Dominicis Response Functional One-Loop Renormalization Group Analysis Two-Loop Renormalization Group Analysis Conserved Dynamics Variant Critical Aging and Outlook

  3. Experimental Motivation Pumped semiconductor quantum wells in optical cavities: driven Bose–Einstein condensation of exciton-polaritons J. Kasprzak et al. , Nature 443 , 409 (2006); K.G. Lagoudakis et al. , Nature Physics 4 , 706 (2008) Theoretical approach: ◮ nonlinear Langevin dynamics, mapped to path integral ◮ perturbatively analyze ultraviolet divergences ( d ≥ d c = 4) ◮ scale ( µ ) dependence, flow equations for running couplings ◮ emerging symmetry : ξ → ∞ induces scale invariance ◮ critical RG fixed point → scale invariance , infrared scaling laws ◮ loop expansion in ϵ = d c − d ≪ 1 → critical exponents

  4. Langevin Description of Critical Dynamics Critical slowing-down as correlated regions grow ( τ ∝ T − T c ): → relaxation time t c ( τ ) ∼ ξ ( τ ) z ∼ | τ | − z ν , dynamic exponent z coarse-grained description: ◮ fast modes → random noise ◮ mesoscopic Langevin equation for slow variables S α ( x , t ) Example: purely relaxational critical dynamics (“model A”): ∂ S α ( x , t ) δ H [ S ] δ S α ( x , t ) + ζ α ( x , t ) , ⟨ ζ α ( x , t ) ⟩ = 0 , = − D ∂ t ⟨ ζ α ( x , t ) ζ β ( x ′ , t ′ ) ⟩ = 2 D k B T δ ( x − x ′ ) δ ( t − t ′ ) δ αβ Einstein relation guarantees that P [ S , t ] → e − H [ S ] / k B T as t → ∞ non-conserved order parameter: D = const . conserved order parameter: relaxes diffusively , D → − D ∇ 2 Generally: mode couplings to additional conserved , slow fields → various dynamic universality classes

  5. Driven-Dissipative Bose–Einstein Condensation Noisy Gross–Pitaevskii equation for complex bosonic field ψ : [ i ∂ψ ( x , t ) − ( A − iD ) ∇ 2 − µ + i χ = ∂ t + ( λ − i κ ) | ψ ( x , t ) | 2 ] ψ ( x , t ) + ζ ( x , t ) A = 1 / 2 m eff ; D diffusivity (dissipative); µ chemical potential; χ ∼ pump rate - loss; λ, κ > 0: two-body interaction / loss noise correlators: ( γ = 4 D k B T in equilibrium) ⟨ ζ ( x , t ) ⟩ = 0 = ⟨ ζ ( x , t ) ζ ( x ′ , t ′ ) ⟩ ⟨ ζ ∗ ( x , t ) ζ ( x ′ , t ′ ) ⟩ = γ δ ( x − x ′ ) δ ( t − t ′ ) r = − χ D , r ′ = − µ D , u ′ = 6 κ D , r K = A D , r U = λ κ , ζ → − i ζ → time-dependent complex Ginzburg–Landau equation [ ∂ψ ( x , t ) r + ir ′ − (1 + ir K ) ∇ 2 = − D ∂ t 6 (1 + ir U ) | ψ ( x , t ) | 2 ] + u ′ ψ ( x , t ) + ζ ( x , t )

  6. Relationship with Equilibrium Critical Dynamics ”Model A” relaxational kinetics for non-conserved order parameter: δ ¯ ∂ψ ( x , t ) H [ ψ ] = − D δψ ∗ ( x , t ) + ζ ( x , t ) ∂ t with non-Hermitean “Hamiltonian” ∫ [( r + ir ′ ) | ψ ( x , t ) | 2 + (1 + ir K ) |∇ ψ ( x , t ) | 2 ¯ d d x H [ ψ ] = 12 (1 + ir U ) | ψ ( x , t ) | 4 ] + u ′ ◮ (1) r ′ = r K = r U = 0: equilibrium model A for non-conserved two-component order parameter, GL-Hamiltonian H [ ψ ] ◮ (2) r ′ = r U r , r K = r U ̸ = 0: S 1 / 2 = Re / Im ψ , ¯ H = (1 + ir K ) H δ H [ ⃗ ∑ δ H [ ⃗ ∂ S α ( x , t ) S ] S ] = − D δ S α ( x , t ) + Dr K ϵ αβ δ S β ( x , t ) + η α ( x , t ) ∂ t β ⟨ η α ( x , t ) ⟩ = 0 , ⟨ η α ( x , t ) η β ( x ′ , t ′ ) ⟩ = γ 2 δ αβ δ ( x − x ′ ) δ ( t − t ′ ) → effective equilibrium dynamics with detailed balance (FDT)

  7. Scaling Laws and Critical Exponents (Bi-)critical point τ, τ ′ = r K τ → 0: correlation length ξ ( τ ) ∼ | τ | − ν universal scaling for dynamic response and correlation functions: ( ) 1 ω χ ( q , ω, τ ) ∝ | q | 2 − η (1 + ia | q | η − η c ) ˆ χ | q | z (1 + ia | q | η − η c ) , | q | ξ ( ω | q | z , | q | ξ, a | q | η − η c ) 1 | q | 2+ z − η ′ ˆ C ( q , ω, τ ) ∝ C five independent critical exponents (three in equilibrium: ν, η, z ) Non-perturbative (numerical) renormalization group study: d = 3: ν ≈ 0 . 716, η = η ′ ≈ 0 . 039, z ≈ 2 . 121, η c ≈ − 0 . 223 L.M. Sieberer, S.D. Huber, E. Altman, S. Diehl, Phys. Rev. Lett. 88 , 045702 (2013); Phys. Rev. B 89 , 134310 (2014) Thermalization : one-loop → scenario (2); two-loop → model A (1) Critical exponents in ϵ = 4 − d expansion: 10 + O ( ϵ 2 ) , η = ϵ 2 ν = 1 2 + ϵ 50 + O ( ϵ 3 ) z = 2 + c η , c = 6 ln 4 3 − 1 + O ( ϵ ) as for equilibrium model A; in addition, novel critical exponent : ( ) η c = c ′ η , c ′ = − + O ( ϵ ) , but FDT → η ′ = η 4 ln 4 3 − 1 ϵ = 1: ν ≈ 0 . 625, η = η ′ ≈ 0 . 02, z ≈ 2 . 01452, η c ≈ − 0 . 0030146

  8. Onsager–Machlup Functional Coupled Langevin equations for mesoscopic stochastic variables: ∂ S α ( x , t ) = F α [ S ]( x , t ) + ζ α ( x , t ) , ⟨ ζ α ( x , t ) ⟩ = 0 , ∂ t ⟨ ζ α ( x , t ) ζ β ( x ′ , t ′ ) ⟩ = 2 L α δ ( x − x ′ ) δ ( t − t ′ ) δ αβ ◮ systematic forces F α [ S ], stochastic forces (noise) ζ α ◮ noise correlator L α : can be operator, functional of S α Assume Gaussian stochastic process → probability distribution: [ ∫ ∫ t f ]] ∑ [ − 1 ζ α ( x , t ) ( L α ) − 1 ζ α ( x , t ) d d x W [ ζ ] ∝ exp dt 4 0 α switch variables ζ α → S α : W [ ζ ] D [ ζ ] = P [ S ] D [ S ] ∝ e −G [ S ] D [ S ], with Onsager-Machlup functional providing field theory action: ∫ ∫ ∑ [ ] G [ S ] = 1 ( ∂ t S α − F α [ S ]) ( L α ) − 1 ( ∂ t S α − F α [ S ]) d d x dt 4 α ◮ functional determinant = 1 with forward (Itˆ o) discrectization ∫ ◮ normalization: D [ ζ ] W [ ζ ] = 1 → “partition function” = 1 ◮ problems: ( L α ) − 1 , high non-linearities F α [ S ] ( L α ) − 1 F α [ S ]

  9. Janssen–De Dominicis Response Functional ∫ Average over noise “histories” : ⟨ A [ S ] ⟩ ζ ∝ D [ ζ ] A [ S ( ζ )] W [ ζ ]: ∫ ( ) D [ S ] ∏ ∏ ∂ t S α ( x , t ) − F α [ S ]( x , t ) − ζ α ( x , t ) use 1 = ( x , t ) δ α ∫ ∫ [ ∫ ∫ dt ∑ ] S α ( ∂ t S α − F α [ S ] − ζ α ) D [ i � α � d d x = S ] D [ S ] exp − [ ] ∫ ∫ ∫ ∫ ∑ S α ( ∂ t S α − F α [ S ]) D [ i � d d x � ⟨ A [ S ] ⟩ ζ ∝ S ] D [ S ] exp − dt α ∫ ( ∫ ∫ [ 1 ]) ∑ 4 ζ α ( L α ) − 1 ζ α − � S α ζ α d d x × A [ S ] D [ ζ ] exp − dt α perform Gaussian integral over noise ζ α : ∫ ∫ S ] e −A [ � S , S ] , D [ i � ⟨ A [ S ] ⟩ ζ = D [ S ] A [ S ] P [ S ] , P [ S ] ∝ with Janssen–De Dominicis response functional ∫ ∫ t f [ S α ] ∑ S α ( ∂ t S α − F α [ S ]) − � A [ � d d x � S α L α � S , S ] = dt 0 α ∫ ∫ D [ S ] e −A [ � S , S ] = 1; integrate out � S α → Onsager–Machlup D [ i � S ]

  10. One-Loop Renormalization Group Analysis Causality : propagator → directed line, noise → two-point vertex k two-point vertex function with k γ = 4 DT , r ′ = r U r , u = u ′ T : q q q + u [ ∫ ] 1 r (1+ ir U )+(1+ ir K ) q 2 + 2 Γ ˜ ψψ ∗ ( q , ω ) = − i ω + D 3 u (1+ ir U ) r + k 2 k → fluctuation-induced shift of critical point: τ = r − r c , τ ′ = r U τ q q q q 2 2 2 q q q 2 u u q−k k k 2 2 2 q q + k k + q k q + q 2 u 2 2 u 2 u 2 q k k k q q q 2 2 2 2 ( ) 1 + 2 r KR ∆ R +∆ R 2 u R ∆ = r U − r K : β ∆ = ∆ R ⇒ ∆ R → 0 1+ r 2 3 KR [ ] ∆ R 2 − ϵ + 5 ⇒ u R → u ∗ β u = u R 3 u R − KR ) u R 3(1+ r 2 → thermalization ; to O ( ϵ ): ν − 1 = 2 − 2 5 ϵ , η = η c = η ′ = 0, z = 2

  11. Two-Loop Renormalization Group Analysis q u q two-loop Feynman graphs for two-point k+k -q k vertex functions Γ ˜ ψ ∗ ( q , ω ), Γ ˜ ψψ ∗ ( q , ω ) k ψ ˜ + k k special case r ′ = 0: q k+k -q T. Risler, J. Prost, and F. J¨ ulicher, Phys. Rev. E 72 , 016130 (2005) q u k k k k k k k+k−q k q+k−k k u u u u k k + + + q q q q k k u u k k q k q k u u k k q q RG beta function β r K : 9 Β r K 2 u R ⇒ r KR → 0, hence to O ( ϵ 2 ): 12 10 η = η ′ = ϵ 2 50 + O ( ϵ 3 ) 8 ( ) z = 2 + ϵ 2 6 ln 4 3 − 1 6 50 ( ) 4 η c = − ϵ 2 4 ln 4 3 − 1 50 2 r KR subleading scaling exponent 0.5 1.0 1.5 2.0 2.5 3.0

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend