crab waist interaction region for fcc ee and the arc
play

Crab waist interaction region for FCC-ee and the arc first attempt - PowerPoint PPT Presentation

Crab waist interaction region for FCC-ee and the arc first attempt (one quarter of the ring IR: v. 6-13-2, arc: v14) A. Bogomyagkov Budker Institute of Nuclear Physics Novosibirsk November-December, 2014 A. Bogomyagkov (BINP) FCC-ee crab


  1. Crab waist interaction region for FCC-ee and the arc first attempt (one quarter of the ring IR: v. 6-13-2, arc: v14) A. Bogomyagkov Budker Institute of Nuclear Physics Novosibirsk November-December, 2014 A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 1 / 22

  2. Parameters for crab waist Z W H tt Energy [GeV] 45 80 120 175 Perimeter [km] 100 Crossing angle [mrad] 30 Particles per bunch [10 11 ] 1 4 4.7 4 Number of bunches 29791 739 127 33 Energy spread [10 − 3 ] 1.1 2.1 2.4 2.6 Emittance hor. [nm] 0.14 0.44 1 2.1 Emittance ver. [pm] 1 2 2 4.3 β ∗ x /β ∗ y [m] 0.5 / 0.001 Luminosity / IP [ 10 34 cm − 2 s − 1 ] 212 36 9 1.3 Energy loss / turn [GeV] 0.03 0.3 1.7 7.7 A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 2 / 22

  3. Final Focus layout ∆ σ Trajectories at 20 G0=-9.4 kGs/cm, R0=1.2 cm, x=3.5 cm, E=175000 MeV ∆ θ Rectangles G1=9.3 kGs/cm, R1=1.9 cm, x=14.2 cm, 2 =30 mrad 0.15 ° ° 20 10 ° represent 15 0.1 bare 0.05 - e X, m apertures. 0 + e -0.05 -0.1 L [m] -0.15 0 1 2 3 4 5 6 7 8 S, m Q0 3.6 σ Trajectories at 55 Q1 2 0.02 0.015 0.01 0.005 Y, m R [m] 0 -0.005 Q0 0.012 -0.01 Q1 0.019 -0.015 -0.02 0 1 2 3 4 5 6 7 8 S, m A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 3 / 22

  4. Final Focus layout: sketch of solenoids ∆ σ Trajectories at 20 G0=-9.4 kGs/cm, R0=1.2 cm, x=3.5 cm, E= 175 GeV ∆ θ G1=9.3 kGs/cm, R1=1.9 cm, x=14.2 cm, 2 =30 mrad ° ° 0.2 20 10 ° 15 0.15 0.1 0.05 - e X, m 0 H=2 T + e -0.05 -0.1 -0.15 H=1 T H=1 T -0.2 0 1 2 3 4 5 6 7 8 S, m A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 4 / 22

  5. Interaction Region optical functions FFT CCSY CCSX+CCT CRAB AB+MS 100. 0.15 1/ 2 ) x (m) β x 1 / 2 β y 1 / 2 D x 1/ 2 (m 0.12 90. D 0.10 1/ 2 ), β y 80. 0.08 70. 1/ 2 (m 0.05 60. x β 0.03 50. 0.0 40. -0.02 30. -0.05 20. -0.08 10. -0.10 0.0 -0.12 0.0 140. 280. 420. 560. 700. s (m) A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 5 / 22

  6. Final Focus Telescope B0 B1 120. 0.10 β x β y 1/ 2 ) 1 / 2 1 / 2 D x D x (m) 0.09 1/ 2 (m 100. 0.08 β 0.07 80. 0.06 60. 0.05 0.04 40. 0.03 0.02 20. 0.01 0.0 0.0 0.0 10. 20. 30. 40. 50. s (m) A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 6 / 22

  7. Final Focus Telescope: beta chromaticity 3.5 6000. ∆β /β ∆β /β ∆β/β ∆β/β y y x x 5500. 3.0 5000. 2.5 4500. 4000. 2.0 3500. 1.5 3000. 2500. 1.0 2000. 0.5 1500. 1000. 0.0 500. -0.5 0.0 -0.020 -0.005 0.010 dp A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 7 / 22

  8. Y Chromaticity Correction Section B2 B3 B4 10. 0.14 β x β y D x [*10**( 3)] D x (m) 9. 0.13 8. 0.12 7. 0.11 6. 0.10 β (m) 5. 0.09 4. 0.08 3. 0.07 2. 0.06 1. 0.05 0.0 0.04 40. 60. 80. 100. 120. 140. s (m) A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 8 / 22

  9. X Chromaticity Correction Section B5 B6 B7 B8 500. 0.10 β x D x β y β (m) D x (m) 450. 0.08 400. 0.05 350. 0.03 300. 0.0 250. -0.02 200. -0.05 150. -0.08 100. -0.10 50. 0.0 -0.13 140. 180. 220. 260. 300. s (m) A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 9 / 22

  10. Chromaticity Correction Telescope B9 325.0 0.0 β x β y D x β (m) D x (m) -0.01 292.5 -0.02 260.0 -0.03 227.5 -0.04 195.0 -0.05 162.5 -0.06 -0.07 130.0 -0.08 97.5 -0.09 65.0 -0.10 32.5 -0.11 0.0 -0.12 310. 320. 330. 340. 350. 360. s (m) A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 10 / 22

  11. CRAB, AB, MS, DS sections CRAB AB + MS DS 650. 0.16 β x (m), β y (m) x (m) β x β y D x 585. D 0.14 520. 0.12 455. 0.10 390. 325. 0.08 260. 0.06 195. 0.04 130. 0.02 65. 0.0 0.0 350. 450. 550. 650. 750. s (m) A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 11 / 22

  12. Interaction Region layout L B φ [m] [T] [mrad] 1.5 B0 10.5 0.06 1 B1 10.5 0.21 3.7 1 B2 10.5 0.21 3.8 0.5 - e X, m B3 14.5 0.21 5.2 0 CRAB SEXTUPOLE e + B4 14.5 0.21 5.2 -0.5 B5 14.5 0.03 0.6 -1 B6 14.5 0.01 0.2 -1.5 0 100 200 300 400 500 600 700 B7 14.5 -0.13 -3.2 Z, m Before the achromatic bend at the B8 14.5 -0.13 -3.2 crab sextupole each beam is B9 14.5 -0.11 -2.8 diverging at ± 4 . 4 mrad. B10 10.5 0.06 1 A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 12 / 22

  13. Quarter layout 0 - e + e -2000 -4000 -6000 X, m -8000 -10000 -12000 -14000 -16000 0 2000 4000 6000 8000 10000 12000 14000 16000 Z, m A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 13 / 22

  14. Chromaticity: Montague functions One Forth of FCC 4000. 1.0 x , W y W x W y D x ’ x / d δ ( m ) W 0.8 3500. 0.6 3000. dD 0.4 0.2 2500. 0.0 2000. -0.2 1500. -0.4 -0.6 1000. -0.8 500. -1.0 0.0 -1.2 0.0 7.5 15.0 22.5 s (m) [*10**( 3)] A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 14 / 22

  15. Chromaticity: Montague functions One Forth of FCC 200. 1.0 x , W y W x W y D x ’ x / d δ ( m ) W 180. 0.8 160. 0.6 dD 140. 0.4 120. 0.2 100. 0.0 80. -0.2 60. -0.4 40. -0.6 20. 0.0 -0.8 0.0 3. 6. 9. s (m) [*10**( 3)] A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 15 / 22

  16. Energy acceptance I: [-3.3%;+0.9%] One Forth of FCC 127.00 86.00 Value ∆ Q ( 1 . 5 %) Qx Qx Qy Qy 126.95 85.95 Q x 126 . 54 126.90 85.90 Q ′ 0 0 x Q ′′ − 81 − 0 . 009 126.85 85.85 x − 3 . 6 · 10 4 Q ′′′ − 0 . 02 126.80 85.80 x − 2 . 3 · 10 6 Q ′′′′ 0 . 005 126.75 85.75 x Q y 85 . 57 126.70 85.70 Q ′ 0 0 126.65 85.65 y Q ′′ − 33 − 0 . 004 126.60 85.60 y − 2 . 9 · 10 5 Q ′′′ − 0 . 16 126.55 85.55 y − 2 . 7 · 10 6 Q ′′′′ − 0 . 006 126.50 85.50 y -0.04 -0.02 0.0 0.02 0.04 dp A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 16 / 22

  17. Energy acceptance II: [-1.8%;+1.4%] One Forth of FCC 127.00 86.00 Value ∆ Q ( 1 . 5 %) Qx Qx Qy Qy 126.95 85.95 Q x 126 . 54 126.90 85.90 Q ′ 0 0 x Q ′′ − 73 − 0 . 008 126.85 85.85 x − 4 . 1 · 10 4 Q ′′′ − 0 . 02 126.80 85.80 x − 2 . 7 · 10 6 Q ′′′′ 0 . 006 126.75 85.75 x Q y 85 . 57 126.70 85.70 Q ′ 0 0 126.65 85.65 y Q ′′ − 53 − 0 . 006 126.60 85.60 y − 5 · 10 4 Q ′′′ − 0 . 028 126.55 85.55 y − 8 · 10 6 Q ′′′′ − 0 . 017 126.50 85.50 y -0.04 -0.02 0.0 0.02 0.04 dp A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 17 / 22

  18. Energy acceptance II: [-1.8%;+1.4%] (full ring) FCC 506.70 343.0 Value ∆ Q ( 1 . 5 %) Qx Qx Qy Qy 506.63 342.9 Q x 506 . 16 506.56 342.8 Q ′ 0 0 x Q ′′ − 276 − 0 . 03 506.49 342.7 x − 1 . 5 · 10 5 Q ′′′ − 0 . 08 506.42 342.6 x − 9 . 9 · 10 6 Q ′′′′ − 0 . 02 506.35 342.5 x Q y 342 . 28 506.28 342.4 Q ′ 0 0 506.21 342.3 y Q ′′ − 216 − 0 . 02 506.14 342.2 y − 1 . 8 · 10 5 Q ′′′ − 0 . 1 506.07 342.1 y − 3 · 10 7 Q ′′′′ − 0 . 06 506.00 342.0 y -0.04 -0.02 0.0 0.02 0.04 dp A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 18 / 22

  19. Energy acceptance III: momentum compaction One Forth of FCC: momentum compaction 0.6000E-02 malfa [*10**( -3)] malfa 0.5500E-02 0.5000E-02 0.4500E-02 0.4000E-02 0.3500E-02 0.3000E-02 0.2500E-02 0.2000E-02 0.1500E-02 0.1000E-02 0.5000E-03 0.0 -0.04 -0.02 0.0 0.02 0.04 dp A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 19 / 22

  20. Parameters of one quarter of the ring tt Energy [GeV] 175 Perimeter [m] 24747.6 5 . 7 · 10 − 6 Momentum compaction Emittance hor. [nm] 1.8 Energy spread [10 − 3 ] 1.6 β ∗ x /β ∗ y [m] 0.5 / 0.001 Energy loss / turn [GeV] 2.15 A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 20 / 22

  21. Summary I What is done? Closed ring is ready, files are in 1 /afs/cern.ch/eng/fcc/ee/TLEP_V14_IR_6-13-2 At the end of IR the distance between the beams is 3 m. 2 Energy acceptance [-1.8%;+1.4%]. 3 Chromaticity of momentum compaction is reasonable. 4 What is next? Redo the matching section between IR and the arc (accommodate 1 the extra angle of IR into the arc). Change phase advance per cell to odd multiple of π/ 4. 2 Four families of sextupoles in the arc and octupoles in IR. 3 Dynamic aperture studies, 6d tracking. 4 A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 21 / 22

  22. Summary II Questions Is it possible to build required final focus quadrupoles? 1 How longitudinal detector field will be compensated? 2 Is there a need to increase L ∗ ? 3 Do positions and fields of the dipoles allow for synchrotron 4 radiation shielding and detector background minimization? How much length is needed for RF cavities in the IR? 5 Feedback, please! 6 A. Bogomyagkov (BINP) FCC-ee crab waist IR and the arc 22 / 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend