cppc developm ent of a sim ple com puter code for h 2 and
play

CPPC: Developm ent of a Sim ple Com puter Code for H 2 and CO Com - PowerPoint PPT Presentation

CPPC: Developm ent of a Sim ple Com puter Code for H 2 and CO Com bustion in Severe Accidents Fernando Robledo ( CSN) Juan M. Martn-Valdepeas ( CSN) Miguel A. Jim nez ( CSN) Francisco Martn-Fuertes ( UPM) CSNI WORKSHOP ON UNCERTAINTIES


  1. CPPC: Developm ent of a Sim ple Com puter Code for H 2 and CO Com bustion in Severe Accidents Fernando Robledo ( CSN) Juan M. Martín-Valdepeñas ( CSN) Miguel A. Jim énez ( CSN) Francisco Martín-Fuertes ( UPM) CSNI WORKSHOP ON UNCERTAINTIES IN PSA-2 ANALYSES

  2. What is CPPC? • Developed by Polytechnic University of Madrid for CSN. • Stand-alone code for fast calculations on pressure rises in the containment from H 2 and CO combustion in severe accidents. • Most recent advances in the field of H 2 and CO combustion. • Useful tool for PSA-2 assessments.

  3. What is CPPC? I NPUT: OUTPUT: • Masses of H 2 and • Combustion completeness. CO. • Adiabatic and isochoric • Initial combustion pressure. environmental • Chapman-Jouguet conditions in the pressure. containment, • Chapman-Jouguet before burning. reflected pressure. • Simple geometric • Effective pressure. data: volume of the enclosure. • Combustion regime.

  4. Main Assumptions • Ideal gases. • Gases homogeneously mixed in containment. • Steam-saturated atmosphere previous to the combustion. • Water properties from Steam Tables.

  5. Flammability Limits • Correlation for upward propagation: X H2O = a f + b f X H2 + c f exp (d f X H2 + b f T u ) • a f , b f , c f, d f fitted experimentally.

  6. Combustion Completeness • Pilch et al (1996). • Murata et al (1997), taken from CONTAIN 2.0 • HECTR 1.5, taken from MELCOR 1.8.4 (Gauntt ,1997).

  7. Combustion Completeness 1 0.9 0.8 Combustion Completeness CC 0.7 Pilch (XD=0.0) Pilch (XD=0.3) 0.6 Pilch (XD=0.6) Pilch Spray (XD=0.0) 0.5 Pilch Spray (XD=0.3) Pilch Spray (XD=0.6) Murata 0.4 Murata Spray Gauntt 0.3 0.2 0.1 0 0 0.05 0.1 0.15 0.2 0.25 0.3 Molar fraction of flammable gases X C

  8. Combustion Regimes • Regimes considered: • Slow deflagrations • Flame Acceleration • DDT • Detonation • For each gas mixture CPPC calculates: • Fulfillment of criterion for combustion regime. • Effective static pressure.

  9. Combustion Regimes (Kuznetsov, 2003). Δ 1400 P/Po, 30 B R = 0 . 6 ( a i r ) quasi-detonations 20 1200 174 mm 80 mm 10 t, s 9%H 9%H 2 2 10% 2 10% 2 0 0.2 0.21 11% 2 11% 2 1000 λ 13% 2 15% 2 L>7 25% 2 10 520 mm 8 800 m /s 9%H 2 6 10% 2 4 11% 2 , V f t, s ast flames 2 600 0 0.6 0.8 1.0 400 σ σ > * 1.2 0.8 200 0.4 t, s slow flames 0.0 0 4 8 12 0 10 70 20 30 40 50 60 x/D

  10. Flame Acceleration Criterion ρ v σ = = • Selection of b u ρ parameter ( σ ) v u b c ⎛ ⎞ σ • Establishing of E ⎜ ⎟ σ = + * a a b ⎜ ⎟ σ σ σ critical ⎝ ⎠ T u

  11. Flame Acceleration Criterion σ = • Definition of index i σ for FA. σ * σ = σ ≥ • Quantification of 0 . 92 i σ index for FA *

  12. Flame Acceleration Criterion. Dorofeev (2001)

  13. DDT Criterion D = • Definition of DDT i λ λ index 7 = • D geometric value 1 / 3 D V λ = • λ : detonation cell log ( ) f ( X , X , T , p ) 10 H 2 , dry H 2 O size D = ≥ • Quantification of 0 . 57 i λ λ DDT index 7

  14. DDT Criterion (CSNI SOAR, 2000).

  15. DDT Criterion (Breitung, 2000).

  16. Direct Detonation Criterion Steam Air Detonable Flammable Non-flammable H 2 /air stochiometric mixture Hydrogen

  17. Pressure Rise Calculation: Slow Deflagrations ( ) ( ) ∑ = ∑ + + AICC n c T n c T n q n q A v , A b A v , A u H 2 , q H 2 CO , q CO b u A A ( ) R = + + + − 2 3 c A B T C T D T R vA A A A A PM A ⎛ ⎞ ⎛ ⎞ AICC T n ⎜ ⎟ ⎜ ⎟ = AICC b b p p ⎜ ⎟ ⎜ ⎟ b u ⎝ ⎠ T n ⎝ ⎠ u u

  18. Pressure Rise Calculation: General Case p ( t ) + π = 2 i y ' ' ( 2 f ) y m Frequency: input data. 5 to 500 Hz as indicated by Breitung and Redlinger (1995b)

  19. Pressure Rise Calculation: General Case. • Pi(t) obtained from typical shape of pressure loads at the different combustion regimes (Breitung and Redlinger (1995b). • Upper bound values: • P CJ = 1.8 (+0.08) P AICC • P CJ-R = 4.1 (+ 0.3) P AICC

  20. Pressure Rise Calculation: General case. 5 4.5 4 3.5 3 p SD p/p AICC p FA 2.5 p DDT p DET 2 1.5 1 0.5 0 0.00001 0.0001 0.001 0.01 0.1 1 10 time (s)

  21. Pressure Rise Calculation: General case. • Calculation of the effective static pressure: p ( t ) + π = 2 i y ' ' ( 2 f ) y m = π 2 ( 2 ) p eff f m y max

  22. Pressure Rise Calculation: General Case. 7 6 5 peff SD peff / pAICC 4 peff FA peff DDT peff DET 3 2 1 0 0 50 100 150 200 250 300 350 400 450 500 frequency (Hz)

  23. Validation & Verification • Comparison with MELCOR calculations to verify that CPPC provides an upper bound. • CPPC code uses combustion completeness = 1. • T0: scenarios with CHR activation coincident with vessel failure. • T1: scenarios with CHR activation coincident with the maximum of the σ parameter. • ESF: Spray + Fan-cooling units. • FCL: Fan-cooling units. Full capacity. • SPR: Spray system: full capacity. Full capacity.

  24. Validation & Verification MELCOR CPPC Scenario Duration H2 ( CO) Pm ax PAI CC Regim e m ass burnt ( bar) ( bar) ( s) ( kg) dryT0 - 7 0 5 1 ( 2 2 9 ) 1 .6 9 4 .1 1 0 SD ESF dryT0 - 5 8 8 0 ( 3 3 1 ) 1 .9 6 4 .1 0 6 SD FCL dryT0 - 3 1 1 2 0 2 .2 3 3 .9 9 6 SD SPR ( 1 1 7 5 ) w etT0 - 5 7 4 2 4 5 .1 1 6 .4 8 3 FA ESF ( 3 1 4 5 ) w etT0 - 5 7 4 2 4 5 .1 1 6 .4 9 5 FA FCL ( 3 1 4 9 ) w etT0 - 1 7 3 7 4 4 .4 5 5 .1 7 5 SD SPR ( 1 9 1 4 )

  25. Validation & Verification MELCOR CPPC Scenario Duration H2 ( CO) Pm ax P AI CC Regim e ( s) m ass burnt ( bar) ( bar) ( kg) dryT1 - 4 6 3 6 4 4 .5 3 5 .3 2 2 FA ESF ( 2 8 4 8 ) dryT1 - 5 8 3 6 1 4 .4 6 5 .3 3 2 FA FCL ( 2 6 4 4 ) dryT1 - 4 4 3 6 0 4 .4 6 5 .3 7 8 FA SPR ( 2 6 3 5 ) w etT1 - 8 8 4 2 0 5 .0 7 6 .3 7 4 FA ESF ( 3 1 3 8 ) w etT1 - 8 6 4 2 2 5 .0 7 6 .3 7 5 FA FCL ( 3 1 5 5 ) w etT1 - 8 9 4 1 9 4 .9 2 6 .4 5 3 SD SPR ( 3 1 2 9 )

  26. Validation & Verification • CPPC results compared with those obtained with other code for AICC calculations in case of slow deflagrations. • Satisfactory results, differences in the pressure increase range in the 1%.

  27. Validation & Verification. Breitung calculations. XH2 XH2 O Tu ( * ) Pu ( * ) P AI CC P AI CC Deviation ( % ) ( % vol) ( % vol) ( K) ( bar) Breitung CPPC ( bar) ( bar) 1 5 3 0 3 6 2 2 .2 6 9 .9 5 3 1 0 .0 3 -0 .8 2 0 4 0 3 8 0 3 .2 6 1 4 .4 8 1 4 .4 0 .6 2 0 0 3 6 6 2 .5 8 1 3 .2 9 1 3 .5 -1 .5 1 5 1 5 3 3 5 1 .6 2 7 .4 8 7 7 .9 5 -1 .3 2 0 0 2 9 3 1 .2 7 8 .6 1 8 8 .8 2 -2 .3 2 9 .5 0 2 9 3 1 .4 4 1 1 .8 7 1 2 .7 7 -7 .5 3 0 1 5 3 4 2 2 .1 2 1 3 .3 1 1 3 .3 6 -0 .3 2 5 3 0 3 6 8 2 .8 4 1 4 .2 8 1 4 .2 4 0 .3

  28. Validation & Verification. Breitung calculations. • Relative errors lie around 1% in wet mixtures. • Less than 10% in dry mixtures. • Results are considered as acceptable.

  29. Plant Applications CSN methodology to calculate the containment failure probability due to hydrogen combustion during the in-vessel phase

  30. Plant Applications • Obtain containment pressure prior to H 2 combustion. MELCOR calculations. • Obtain H 2 mass in the containment. H 2 well mixed. • Calculate the containment pressurization. CPPC useful in this step. • Overlap the containment pressure distribution with containment fragility curve to obtain containment failure probability. • Reflooding considered: 20% additional hydrogen generation (Kuan, 1994).

  31. Plant Applications 1 0.9 0.8 0.7 0.6 PROBABILITY pdf 0.5 cdf 0.4 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Zr FRACTION OXIDAZED

  32. Plant Applications Results obtained • No reflooding scenarios: negligible probability. • Reflooding scenarios: significant increase in the containment failure probability and potential for flame acceleration. • Safety significance of these results under study.

  33. Plant Applications: No reflooding case 1 0.9 0.8 CUMULATIVE PROBABILITY 0.7 0.6 FRAGILITY 0.5 1.39 BARS 0.4 0.3 0.2 0.1 0 0 1 2 3 4 5 6 7 8 9 10 PRESSURE (BARS)

  34. Plant Applications • Future applications are planned: • Continuation of the verification process. • Calculation of the containment failure probability for the ex-vessel phase. • Analyses of local hydrogen accumulations.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend