coulomb interactions in eft
play

Coulomb Interactions in EFT Gautam Rupak Mississippi State - PowerPoint PPT Presentation

Coulomb Interactions in EFT Gautam Rupak Mississippi State University EMMI: The Systematic Treatment of the Coulomb Interaction in Few-Body Systems Darmstadt, Jan 11-15, 2016 Motivations Astrophysics Low energy reactions dominate


  1. Coulomb Interactions in EFT Gautam Rupak Mississippi State University EMMI: The Systematic Treatment of the Coulomb Interaction in Few-Body Systems Darmstadt, Jan 11-15, 2016

  2. Motivations Astrophysics • Low energy reactions dominate • Need accurate cross sections but hard to measure experimentally • Model-independent theoretical calculations important Theoretical • Weakly bound systems • First principle calculation Use Effective Field Theory

  3. Main Issues • EFT power-counting • Practical implementation The first item is of paramount importance because you want to make error estimates even when resumming potentially sub-leading pieces for practical reasons. I concentrate on the power-counting.

  4. EFT: the long and short of it • Identify degrees of freedom expansion in Q L = c 0 O (0) + c 1 O (1) + c 2 O (2) + · · · Λ Hide UV ignorance IR explicit - short distance - long distance • Determine from data (elastic, inelastic) c n • EFT : ERE + currents + relativity Not just Ward-Takahashi identity

  5. Weakly Bound Systems i A ( p ) = 2 π p cot δ 0 − ip = 2 π i i 2 p 2 + · · · − ip µ µ − 1 /a + r --- Large scattering length a >> 1 / Λ rp 2 i A ( p ) ≈ − 2 π i  1 + 1 � 1 /a + ip + · · · µ 1 /a + ip 2 EFT non-perturbative + + + · · · − C 0 Weinberg ’90 2 π p ⇒ C 0 = 2 π a − i i A ( p ) = Bedaque, van Kolck ’97 C 0 + i µ 1 µ Kaplan, Savage, Wise ’98 large coupling

  6. Proton-proton in EFT = + + + ⋅ ⋅ ⋅ + + + ⋅ ⋅ ⋅ 2 π = 1 1 α M − 1 + 3 λ d − 4 − ln µ π d − 3 − 2 α µ [ 2 C E ] a − µC 0 Kong, Ravndal 1999 In EFT there is no way to relate coupling from n-p and p-p channel.

  7. Dimer-field C 0 → g 2 ∆ Doesn’t work so nicely for p-d. No enhancement of Coulomb ladder: physics missing!

  8. Fundamental Deuteron ( E d , ⃗ ( E d , ⃗ p ) k ) e 2 k ) 2 ∼ e 2 ≃ p 2 p − ⃗ ( ⃗ ( E n , ⃗ ( E n , ⃗ p ) k ) ( E d , ⃗ p ) p − ⃗ q ⃗ ( E d , ⃗ k ) q ≃ e 4 � d 3 q ⃗ 1 1 E T − ( q − p ) 2 / (2 µ ) q 2 ( q − p + k ) 2 ∼ e 2 α µ p 2 p ( E n , ⃗ ( E d , ⃗ p ) p + ⃗ q − ⃗ k )

  9. n-photon exchanges n th − loop : ∼ e 2 ◆ n ✓ α µ p 2 p It is clear that we will have the right physics if the in the EFT the dimer propagator has the right physical cuts. Use the dressed dimer propagator p ) = 1 ∆ → 2 ⇡ 1 D ( p 0 , ~ µg 2 p − � + p 2 / 4 − µp 0 2 � � D ( E d + q 0 , ~ p ) ∼ ∼ ( q 2 − p 2 ) / 4 − M N q 0 q 2 − p 2 Put nucleon on pole, IR enhancement. Coulomb ladder recovered

  10. Coulomb Ladder = + + + ... x x put nucleons on-shell

  11. But ... what happens if we also include nucleon-exchange?

  12. Key Insight In p-d scattering we either have have a deuteron- nucleon or 3-nucleon state. The latter is off-shell by deuteron breakup and for these diagrams the loop momentum need not scale with but with γ ∼ Q p

  13. Photon iteration again This loop is not IR enhanced but larger by 1/Q Rupak, Kong 2001 = 4 πα Z d × p 2 nucleon lines always scale as M/Q^2

  14. Power-Counting After we put a single nucleon in every loop on-shell, either no no nucleon line or two nucleon lines exists. Z d 3 q ∼ Q 3 or p 3 (1) Loop : (2) Nucleon propagator : M N /Q 2 (3) Dressed dimer : Q/q 2 (4) photon : 1 /q 2 Usual one when p~Q

  15. Examples (a) (b) (c) (d) (e) (f) (g) (h) Rupak, Kong NPA 717, 73 (2003)

  16. On blackboard

  17. More Diagrams (a) (b) (c) = + + + + + (d)

  18. On blackboard

  19. Quartet Channel -40 p-d -60 (0) δ 40 60 80 100 n-d -100 k (MeV) see König’s and Vanasse’s talk

  20. Go All The Way -- go beyond counting IR enhancement -- explicitly identify three scales Q, p, α µ see van Kolck’s talk

  21. Reactions in lattice EFT • Consider: a ( b, γ ) c • Need effective “cluster” Hamiltonian -- acts in cluster coordinates, spins,etc. • Calculate reaction with cluster Hamiltonian. Many possibilities --- traditional methods, continuum EFT, lattice method Rupak & Lee, PRL 2013, arXiv:1302.4158 Pine, Lee, Rupak, EPJA 2013, arXiv:1309.2616 Rupak & Ravi, PLB 2014, arXiv:1411.2436 Elhatisari et al, Nature 528, 111 ( 2015 ) , arXiv:1506.03513

  22. Spherical Wall 0.05 3% fitting error propagates 0.04 Analytic T fi (MeV − 1 ) b=1/100 MeV − 1 0.03 Gamow peak b=1/200 MeV − 1 6 keV 0.02 0.01 0 0 200 400 600 800 1000 1200 E (keV) s γ 2 Λ ( p ) = | T fi ( p ) | 8 π C 2 η Kong, Ravndal 1999 Λ EF T (0) ≈ 2 . 51 Rupak, Ravi PLB 2014 Lattice fit : Λ (0) ≈ 2 . 49 ± 0 . 02

  23. Conclusions • Power-counting loop momenta in p-d • Identify powers of three scales • Iterating sub-leading pieces could be trouble • Non-analytic behavior at very low momentum • Big picture

  24. Thank you

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend