cosmic particle accelerators ii
play

Cosmic (Particle) Accelerators II - Sources & Mechanisms - Frank - PowerPoint PPT Presentation

Cosmic (Particle) Accelerators II - Sources & Mechanisms - Frank M. Rieger ISAPP School Heidelberg, May 28, 2019 Max Planck Institut ITA Univ. Heidelberg fr Kernphysik Heidelberg, Germany Outline radio (VLA) Particle


  1. Cosmic (Particle) Accelerators II - Sources & Mechanisms - Frank M. Rieger ISAPP School Heidelberg, May 28, 2019 Max Planck Institut 
 ITA Univ. Heidelberg für Kernphysik Heidelberg, Germany

  2. Outline radio (VLA) • Particle Acceleration Mechanisms • Gap-type particle acceleration (pulsars, black holes) optical (HST) ‣ concept & relevance • Fermi-type particle acceleration ‣ stochastic 2nd order Fermi ‣ shock acceleration - 1st order Fermi (SNR) ‣ shear acceleration (AGN) • Conclusions 2

  3. Possible Acceleration Processes & Sites ( not exhaustive ) radio (VLA) “Fermi-type” “one-shot” wave-particle interactions optical (HST) stochastic shock “vacuum” gap reconnection shear (1st order) (2nd order) AGN & Pulsars… AGN, PWN… AGN, SNRs, PWN.. AGN… AGN… charge density? efficiency efficiency? efficiency? limited in size? ( Γ s , σ )? topology? spectral energetic efficiency? transparency? localized? shape? seeds? spectral shape? 3

  4. ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ The Occurrence of Gaps in Pulsar Magnetospheres I • in vacuum: e E II >> F grav at surface Goldreich & Julian 1969 ‣ vacuum conditions cannot exist • if enough charges, force-free conditions possible: optical (HST) E = − ( v × B ) / c = − ([ Ω × ⃗ r ] × B ) / c • Goldreich-Julian charge density: ∇ ⋅ Ω ⋅ E B ≃ − ρ GJ = 4 π 2 π c • co-rotating dipole magnetic field defines null charge surface e θ ) / r 3 B ∝ (2 cos θ e r + sin θ ⇒ ρ GJ ( r ) ∝ (sin 2 θ − 2 cos 2 θ ) / r 3 R LC =c/ Ω • no particle acceleration (E || =0) 4

  5. ⃗ ⃗ ⃗ ⃗ ⃗ ⃗ The Occurrence of Gaps in Pulsar Magnetospheres II Possible sites of particle acceleration • ideal MHD in most of magneto- sphere: E ⋅ B = 0 optical (HST) • deficient charge supply: E ⋅ B ≠ 0 ⇒ particle acceleration • Solve Gauss’ law: ∇ ⋅ E = 4 π ( ρ − ρ GJ ) (Credits: A. Harding) (e.g., Ruderman & Sutherland 1975; Cheng et al. 1985; Muslimov & Harding 2003) 5

  6. The Occurrence of Gaps in BH Magnetospheres ‣ Null surface in Kerr Geometry (r ~ r g ≣ GM/c 2 ) for force-free magnetosphere, vanishing of poloidal electric field E p ∝ ( Ω F - ω ) ∇Ψ = 0, ω =Lense-Thirring optical (HST) ⇒ 𝜍 GJ changes sign, “gap” may easily develop ‣ Stagnation surface (r ~ few r g ) Inward flow of plasma below due to gravitation field, outward motion above ⇒ charges need to be continuously replenished Levinson & Segev 2017 (e.g., Blandford & Znajek 1977; Beskin et al. 1992, Hirotani & Okamoto 1998) 6

  7. The Conceptual Relevance of BH Gaps • BH-driven jets (Blandford-Znajek) ‣ Self-consistency: Plasma source needed to ensure force-free MHD optical (HST) • Non-thermal Particle Acceleration ‣ Implication: efficient (direct) acceleration of electrons & positrons • Radiation & Pair Cascade….. ‣ Features: expect ɣ -ray production, ‣ ɣɣ -absorption triggers pair cascade ‣ generating charge multiplicity ‣ ensuring electric field screening (closure) Koide+ 7

  8. Gamma-Ray Emission from AGN Magnetospheres ‣ Direct electric field acceleration: Rate of energy gain for electron: d ɣ /dt ∝ e Δϕ gap · (c/h) optical (HST) ‣ Curvature & Inverse Compton: HE ɣ -rays via curvature: 𝓦 ~(0.2c) ( ɣ 3 /R c ) VHE ɣ -rays via IC: h 𝓦 ≲ ɣ m e c 2 ‣ Accretion environment (RIAF): Radiatively inefficient needed to facilitate escape of VHE photons ‣ Maximum Gap luminosity: L gap ∝ n GJ (Volume) (d ɣ /dt) 8

  9. Characterizing the Magnetospheric Potential dE || ”Gauss 0 law” dh = 4 π ( ρ e − ρ GJ ) Possible boundary conditions in the pulsar case : optical (HST) • “ non-free escape” (Ruderman): E II (h=0) ≠ 0, E || (h=H)=0, ρ e << ρ GJ : • “ free escape” ( Arons ): E II (h=0)=0, E || (h=H)=0, ρ e ~ ρ GJ ( ρ e ≠ ρ GJ ≡ Ω B cos θ b ) : 9

  10. Characterizing the Magnetospheric Potential dE || ”Gauss 0 law” dh = 4 π ( ρ e − ρ GJ ) Possible boundary conditions in the pulsar case : optical (HST) • “ non-free escape” (Ruderman): E II (h=0) ≠ 0, E || (h=H)=0, ρ e << ρ GJ : E II h H • “ free escape” ( Arons ): E II (h=0)=0, E || (h=H)=0, ρ e ~ ρ GJ ( ρ e ≠ ρ GJ ≡ Ω B cos θ b ) : 9

  11. Characterizing the Magnetospheric Potential dE || ”Gauss 0 law” dh = 4 π ( ρ e − ρ GJ ) Possible boundary conditions in the pulsar case : optical (HST) • “ non-free escape” (Ruderman): E II (h=0) ≠ 0, E || (h=H)=0, ρ e << ρ GJ : dE || E II dh ' � 4 π ρ GJ ) E || ( h ) = � 4 π ρ GJ h + const E || ( h = H ) = 0 ) const = 4 πρ GJ H ( H � h ) Thus : E || ( h ) = E 0 , where E 0 = 4 πρ GJ H h H H • “ free escape” ( Arons ): E II (h=0)=0, E || (h=H)=0, ρ e ~ ρ GJ ( ρ e ≠ ρ GJ ≡ Ω B cos θ b ) : 9

  12. Characterizing the Magnetospheric Potential dE || ”Gauss 0 law” dh = 4 π ( ρ e − ρ GJ ) Possible boundary conditions in the pulsar case : optical (HST) • “ non-free escape” (Ruderman): E II (h=0) ≠ 0, E || (h=H)=0, ρ e << ρ GJ : dE || E II dh ' � 4 π ρ GJ ) E || ( h ) = � 4 π ρ GJ h + const E || ( h = H ) = 0 ) const = 4 πρ GJ H ( H � h ) Thus : E || ( h ) = E 0 , where E 0 = 4 πρ GJ H h H H • “ free escape” ( Arons ): E II (h=0)=0, E || (h=H)=0, ρ e ~ ρ GJ ( ρ e ≠ ρ GJ ≡ Ω B cos θ b ) : 9

  13. Characterizing the Magnetospheric Potential dE || ”Gauss 0 law” dh = 4 π ( ρ e − ρ GJ ) Possible boundary conditions in the pulsar case : optical (HST) • “ non-free escape” (Ruderman): E II (h=0) ≠ 0, E || (h=H)=0, ρ e << ρ GJ : dE || E II dh ' � 4 π ρ GJ ) E || ( h ) = � 4 π ρ GJ h + const E || ( h = H ) = 0 ) const = 4 πρ GJ H ( H � h ) Thus : E || ( h ) = E 0 , where E 0 = 4 πρ GJ H h H H • “ free escape” ( Arons ): E II (h=0)=0, E || (h=H)=0, ρ e ~ ρ GJ ( ρ e ≠ ρ GJ ≡ Ω B cos θ b ) : dE || dh ' 4 π d ( ρ � ρ GJ ) | h = H/ 2 ( h � H/ 2) dh h ( H � h ) E A =2 π d ( ρ � ρ GJ ) H 2 ) E || ( h ) = � E A with 9 H 2 dh

  14. Magnetospheric Potential & Jet Power in AGN - Differences Solving Gauss’ laws depending on different boundaries radio (VLA) dE || ”Gauss 0 law” dh = 4 π ( ρ e − ρ GJ ) highly under-dense: 𝞻 e << 𝞻 GJ weakly under-dense: 𝞻 e ~ 𝞻 GJ optical (HST) ‣ Gap potential: ‣ Gap potential: ‣ Δϕ gap ~ a spin r g B (H/r g ) 2 ‣ Δϕ gap ~ a spin r g B (H/r g ) 3 ‣ Constraining losses: ‣ Constraining losses: ‣ Curvature, IC… ‣ IC, curvature… ‣ Jet power: ‣ Jet power: ‣ L VHE ~ L jet x (H/r g ) 2 … ‣ L VHE ~ L jet x (H/r g ) 4 … e.g., Blandford & Znajek 1982, e.g., Hirotani & Pu 2016 Levinson 2000 Katsoulakos & FR 2018 Levinson & FR 2011 10

  15. Magnetospheric Potential & Jet Power in AGN - Differences Solving Gauss’ laws depending on different boundaries radio (VLA) dE || ”Gauss 0 law” dh = 4 π ( ρ e − ρ GJ ) highly under-dense: 𝞻 e << 𝞻 GJ weakly under-dense: 𝞻 e ~ 𝞻 GJ optical (HST) ‣ Gap potential: ‣ Gap potential: ‣ Δϕ gap ~ a spin r g B (H/r g ) 2 ‣ Δϕ gap ~ a spin r g B (H/r g ) 3 ‣ Constraining losses: ‣ Constraining losses: ‣ Curvature, IC… ‣ IC, curvature… ‣ Jet power: ‣ Jet power: ‣ L VHE ~ L jet x (H/r g ) 2 … ‣ L VHE ~ L jet x (H/r g ) 4 … Jet power constraints can become relevant e.g., Blandford & Znajek 1982, e.g., Hirotani & Pu 2016 Levinson 2000 Katsoulakos & FR 2018 Levinson & FR 2011 10

  16. Timescales (example) 10 Loss time scales: τ cur 𝜐 cur ∝ 1/ ɣ 3 , τ ic 8 τ acc ( η =1.0, ν =1.0) 𝜐 IC ∝ 1/ ɣ 𝛃 ( 𝛃 =1 Thompson, 𝛃 <0 KN) Characteristic time scale, log 10 ( τ ) τ acc ( η =1.0, ν =2.0) 6 τ acc ( η =1/6, ν =3.0) optical (HST) 4 2 0 Energy gain − 2 − 4 − 6 5 6 7 8 9 10 11 12 13 Lorentz Factor, log 10 ( γ e ) Parameters: M 9 =5, ṁ =10 -4 (ADAF), h/r g =0.5 Katsoulakos & FR 2018 11

  17. Timescales (example) 10 Loss time scales: τ cur 𝜐 cur ∝ 1/ ɣ 3 , τ ic 8 τ acc ( η =1.0, ν =1.0) 𝜐 IC ∝ 1/ ɣ 𝛃 ( 𝛃 =1 Thompson, 𝛃 <0 KN) Characteristic time scale, log 10 ( τ ) τ acc ( η =1.0, ν =2.0) 6 τ acc ( η =1/6, ν =3.0) optical (HST) 4 can reach Lorentz 2 factors ɣ ~10 10 0 Energy gain − 2 − 4 − 6 5 6 7 8 9 10 11 12 13 Lorentz Factor, log 10 ( γ e ) Parameters: M 9 =5, ṁ =10 -4 (ADAF), h/r g =0.5 Katsoulakos & FR 2018 11

  18. Example: Phenomenological Relevance of Gaps in AGN ‣ Gamma-Ray Emission from Radio Galaxies: misaligned jets: moderate Doppler boosting of jet emission only ⇒ gap IC & curvature emission may show up at hard HE-VHE gamma-rays ‣ Possibly related to observable AGN features in: optical (HST) • M87 (d ~17 Mpc): day-scale VHE variability, radio-VHE outburst correlation… • Cen A (d ~ 4 Mpc): spectral hardening of core emission above ~5 GeV… • IC 310 (d ~ 80 Mpc): rapid (5 min) VHE variability, huge power (L ɣ ~ 10 44 erg/sec) VHE flare in Nov 2012 � 10 � � � � 11 � � log � E 2 dN � dE � erg cm � 2 s � 1 �� � � � � � � � 12 � � � � � � M87 Cen A IC 310 � 13 � 14 � 1 0 1 2 3 4 log � E � GeV �� 12 (cf. FR & Levinson 2018 for review and references)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend