convergence of a finite volume scheme and numerical
play

Convergence of a Finite Volume Scheme and Numerical Simulations for - PowerPoint PPT Presentation

Convergence of a Finite Volume Scheme and Numerical Simulations for Water-Gas Flow in Porous Media M. Afif and B. Amaziane IPRALMA de Pau CNRS-UMR 5142 brahim.amaziane@univ-pau.fr Journ ee MoMaS : Mod elisation des Ecoulements


  1. Convergence of a Finite Volume Scheme and Numerical Simulations for Water-Gas Flow in Porous Media M. Afif and B. Amaziane IPRA–LMA de Pau CNRS-UMR 5142 brahim.amaziane@univ-pau.fr Journ´ ee MoMaS : Mod´ elisation des Ecoulements Diphasiques Liquide-Gaz en Milieux Poreux : Cas Tests et R´ esultats IHP Paris, 23 Septembre 2010 M. Afif and B. Amaziane Journ´ ee MoMaS 23 Septembre 2010

  2. PLAN 1 Mathematical model 2 Finite Volume Scheme 3 L ∞ and BV estimates 4 Numerical results of the BOBG test problem 5 References M. Afif and B. Amaziane Journ´ ee MoMaS 23 Septembre 2010

  3. Mathematical model We consider the flow of two immiscible compressible fluids (w=water and g=gas) in a porous medium I =] a , b [= � 2 m =1 I m . Gas pressure - water saturation formulation   0 ≤ S ( x , t ) ≤ 1 in I × ]0 , T [,  � � � �   = Q w Φ ∂ t S + ∂ x f w ( S ) q − ∂ x K ∂ x α ( S ) in I × ]0 , T [, ρ � � � � (1) = Q g  Φ ∂ t P (1 − S ) − ∂ x P λ g ( S ) K ∂ x P in I × ]0 , T [,   σ g � �  q = − λ ( S ) K ∂ x P + β ( S ) in I × ]0 , T [, Φ( x ) is the porosity, K ( x ) absolute permeability, Q ν the source term of phase ν = w , g , kr ν ( S ) the ν -phase relative permeability, λ ν ( S ) = kr ν ( S ) where µ ν the ν -phase viscosity, µ ν λ ( S ) = λ w ( S ) + λ g ( S ) is the total mobility. M. Afif and B. Amaziane Journ´ ee MoMaS 23 Septembre 2010

  4. Finite Volume Scheme Let { t 0 , ..., t N } be a partition of J = [0 , T ]; ∆ t n = t n +1 − t n ; � � N x � � Let x i i =0 be a partition of I and x i + 1 2 = x i +1 + x i / 2; Vertex-Centred control volumes I i := [ x i − 1 2 ; x i + 1 2 ]; h i = | I i | I 1 × J I 2 × J S 1 , n +1 i ∆ t n S n S n i − 1 i + 1 2 2 S 1 , n S 2 , n i i x i − 1 x i x i + 1 2 2 h i Figure: The control volume I i × J n at the interface for i = i 0 . M. Afif and B. Amaziane Journ´ ee MoMaS 23 Septembre 2010

  5. Finite Volume Scheme Saturation equation � � � ∆ t n K i + j S n +1 α m ( S n +1 ) − α m ( S n +1 + i +2 j ) (2) i i Φ i h i ∆ x i + j − 1 j = ± 1 / 2 2 � � + � � ∆ t n � � + − f m � + ∆ t n = S n f m w ( S n 2 jq n w ( S n − 2 jq n Φ i ρ Q n − i ) i +2 j ) i i + j i + j w , i Φ i h i j = ± 1 / 2 Pressure equation � i +2 j ) 2 � λ m � g ( S n +1 ) i + j K i + j ) + ∆ t n ) 2 − ( P n +1 P n +1 S n +1 ( P n +1 (1 − i i i Φ i h i 2∆ x i + j − 1 j = ± 1 / 2 2 i ) + ∆ t n P n i (1 − S n Q n = (3) g , i Φ i σ g With continuity of the capillary pressure at the interface � � − 1 � � � S m =2 P 2 P 1 S m =1 = ) i 0 c c i 0 M. Afif and B. Amaziane Journ´ ee MoMaS 23 Septembre 2010

  6. Finite Volume Scheme �� �� � � K i + 1 q n ∆ x i λ m ( S n ) i + 1 P n i − P n β m ( S n i ) − β m ( S n 2 := 2 + i +1 ) i + 1 i +1 2 Matrix form � S n +1 �� A n � S n +1 F n = � S n +1 , V n +1 �� B n � V n +1 G n = where for all n = 0 , ..., N − 1 S n := ( S n V n := ( v n i ) N x i := P n i (1 − S n i )) N x and i =0 i =0 � S n +1 �� � S n +1 , V n +1 �� A n � � � N x B n � � � N x A n B n := := and ij ij i , j =0 i , j =0 F n := ( F n G n := ( G n i ) N x i ) N x i =0 . and i =0 M. Afif and B. Amaziane Journ´ ee MoMaS 23 Septembre 2010

  7. Finite Volume Scheme A n and B n are the sparse matrix with non nulls entries: � 1 + ∆ t n α ′ m � S n +1 � K i + j A n ii : = i + j , Φ i h i ∆ x i + j − 1 j = ± 1 / 2 2 − ∆ t n α ′ m � S n +1 � K i + j A n j = ± 1 / i , i +2 j : = i + j , 2 Φ i h i ∆ x i + j − 1 2 � 1 + ∆ t n � � S n +1 �� K i + j v n +1 � B n λ m ii : = , g i + j Φ i h i ∆ x i + j − 1 j = ± 1 / 2 2 − ∆ t n � � S n +1 �� K i + j B n v n +1 � λ m j = ± 1 / i , i +2 j : = , 2 , g i + j Φ i h i ∆ x i + j − 1 2 � 1 ˘ ˘ where for γ m ( S ) := − λ m g ( s ) ds , S � ˘ ˘ � � λ m g ( S i ) if S i = S i +2 j � λ m S i + j := γ m ( S i +2 j ) − γ m ( S i ) g otherwise . S i +2 j − S i M. Afif and B. Amaziane Journ´ ee MoMaS 23 Septembre 2010

  8. L ∞ and weak BV estimates (A0) ρ, σ g , µ ν ( ν = w , g ), are positive constants. (A1) Φ ∈ L ∞ ( I ) such that, 0 < Φ − ≤ Φ( x ) ≤ Φ + ≤ 1 a.e. in I . (A2) 0 < K − ≤ K ( x ) ≤ K + < + ∞ a.e. in I . (A3) S 0 , K ∂ x α ( S 0 ) ∈ L ∞ ( I ) ∩ BV ( I ), 0 ≤ S 0 ( x ) ≤ 1 − ε . (A4) P 0 , K ∂ x P 0 ∈ L ∞ ( I ) ∩ BV ( I ), 0 < P 0 − ≤ P 0 ≤ P 0 + < + ∞ . (A5) λ ν , � λ g ∈ C 1 ([0 , 1]; R + ) such that ∀ s ∈ ]0 , 1[, λ ν ( s ) > 0 and � λ g ( s ) ≥ � λ − g > 0. (A6) λ ∈ C 1 ([0 , 1]; R + ) such that ∀ s ∈ [0 , 1], λ ( s ) ≥ λ − > 0. (A7) f w , ˘ f w ∈ C 1 ([0 , 1]; R + ) such that f w (0) = 0 and ∀ s ∈ ]0 , 1[, f ′ w ( s ) > 0. (A8) α, β ∈ C 1 ([0 , 1]; R + ) such that α ′ , β ′ (0) = 0 and ∀ s ∈ ]0 , 1[, α ′ , β ′ ( s ) > 0. (A9) Q ν ∈ L ∞ ( I × J ) ∩ BV ( I × J ), ∂ t Q ν ∈ L ∞ ( I × J ) and Q ν ( x , t ) ≥ 0 a.e. in I × J . M. Afif and B. Amaziane Journ´ ee MoMaS 23 Septembre 2010

  9. L ∞ and weak BV estimates CFL condition � � 2∆ t n ˘ s f ′ � q n � ∞ ≤ 1 , sup w ( s ) + sup f w ( s ) (4) h φ − s and for i n ∈ { 0 , ..., N x } / S n +1 = max i S n +1 , we assume that i n i � q n � Q n w , i n = 0 and ∂ i n ≥ 0 . (5) � � � f w ( S ) where : ∂ i f := 1 if S � = 0 and ˘ f m 2 − f m f w ( S ) := S i + 1 i − 1 f ′ h i w ( S ) otherwise . 2 Proposition 1. Under the assumptions (A0)–(A9) , the CFL condition (4) and (5), the scheme (2)–(3) is L ∞ stable. Furthermore the following discrete maximum principle holds: for all i = 1 , ..., N x we have 0 ≤ S n +1 ≤ 1. i M. Afif and B. Amaziane Journ´ ee MoMaS 23 Septembre 2010

  10. L ∞ and weak BV estimates Proposition 2. Under the assumptions (A0)–(A9) , the CFL condition (4) and (5), the scheme (2)–(3) is BV stable in space for all n = 1 , ..., N , furthermore we have the L 1 continuity in time. Theorem 1. Under the assumptions (A0)–(A9) , the CFL condition (4) and (5), the approximate solution ( S h , P h ) given by the scheme (2)–(3) converge in L 1 (Ω T ) to ( S , P ) a weak solution of (1) as H and ∆ t go to zero. M. Afif and B. Amaziane Journ´ ee MoMaS 23 Septembre 2010

  11. Numerical results Test case BOBG (C. Chavant, 2008) BO BG S = 1 . 0 S = 0 . 77 P g = 10 5 Pa P g = P w = 10 5 Pa P w = P g − P c ( S ) � � � 1 − Bm � − B m 1 P c Capillary pressure: S m ( P c ) := 1 + A m 5 Relative permeability: kr g ( S ) := (1 − S 2 )(1 − S 3 ) and � � − E m for m = 1 or 2. 1 + ( S − Cm − 1) Dm kr m w ( S ) := F m K m ( m 2 ) m Φ m A m ( Pa ) B m C m D m E m F m 1 0.30 1.E-20 1.5E+6 0.060 16.67 1.880 0.5 4.0 2 0.05 1.E-19 1.0E+7 0.412 2.429 1.176 1.0 1.0 M. Afif and B. Amaziane Journ´ ee MoMaS 23 Septembre 2010

  12. Numerical results � � � 1 − Bm � − B m 1 Capilary pressure: S m ( P c ) := P c 1 + A m 5 Relative permeability: kr g ( S ) := (1 − S 2 )(1 − S 3 ) and � � − E m for m = 1 or 2. 1 + ( S − Cm − 1) Dm kr m w ( S ) := F m 1 1E+09 0.9 9E+08 6E+06 kr w 1 (s) 0.8 8E+08 4E+06 2 (s) kr w 0.7 7E+08 2E+06 kr g (s) 0.6 6E+08 0 0.9 0.925 0.95 0.975 1 0.5 5E+08 0.4 4E+08 Pc 1 (s) 0.3 3E+08 2 (s) Pc 0.2 2E+08 0.1 1E+08 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Relative permeability (left) and Capillary pressure (right) M. Afif and B. Amaziane Journ´ ee MoMaS 23 Septembre 2010

  13. Numerical results Total mobility: λ m ( S ) := kr m w ( S ) + kr g ( S ) µ w µ w kr m w ( S ) fractional flow: f m w ( S ) := µ w λ m ( S ) , for m = 1 or 2 1 2000 50000 2E-07 1500 0.8 40000 1000 1E-07 0.6 500 30000 0 0.75 0.8 0.85 0.9 0.95 1 0 0 0.1 0.2 0.3 0.4 0.4 1 (s) lambda 20000 1 (s) f w 2 (s) lambda 0.2 2 (s) f w 10000 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Total mobility λ ( S ) (left) and fractional flow f w (right) M. Afif and B. Amaziane Journ´ ee MoMaS 23 Septembre 2010

  14. Numerical results BO BG S = 1 . 0 S = 0 . 77 P g = 10 5 Pa P g = P w = 10 5 Pa P w = P g − P c ( S ) 1 0.95 0.9 0.85 0.8 0.75 S w (t=0) S w (1.e5 s) 0.7 S w (1.e6 s) S w (1.e7 s) 0.65 S w (1 y) S w (10 y) 0.6 S w (1.e2 y) S w (5.e2 y) 0.55 S w (1.e3 y) 0.5 -0.5 -0.25 0 0.25 0.5 Figure: Water saturation S M. Afif and B. Amaziane Journ´ ee MoMaS 23 Septembre 2010

  15. Numerical results BO BG S = 1 . 0 S = 0 . 77 P g = 10 5 Pa P g = P w = 10 5 Pa P w = P g − P c ( S ) 1 9E+07 0.95 8E+07 P c (t=0) P c (1.e5 s) 0.9 7E+07 P c (1.e6 s) P c (1.e7 s) 0.85 P c (1 y) 6E+07 P c (10 y) 0.8 P c (1.e2 y) 5E+07 P c (5.e2 y) 0.75 S w (t=0) P c (1.e3 y) 4E+07 S w (1.e5 s) 0.7 S w (1.e6 s) 3E+07 S w (1.e7 s) 0.65 S w (1 y) 2E+07 S w (10 y) 0.6 S w (1.e2 y) S w (5.e2 y) 1E+07 0.55 S w (1.e3 y) 0 0.5 -0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5 Figure: Water saturation S Figure: Capillary pressure P c M. Afif and B. Amaziane Journ´ ee MoMaS 23 Septembre 2010

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend