contrastive divergence by accelerated langevin dynamics
play

Contrastive Divergence by Accelerated Langevin Dynamics . . . - PowerPoint PPT Presentation

. Contrastive Divergence by Accelerated Langevin Dynamics . . . Masayuki Ohzeki Kyoto University 2015/08/11 Japan-France Joint Seminar New Frontiers in Non-equilibrium Physics of Glassy Materials This work is in collaboration with


  1. . Contrastive Divergence by Accelerated Langevin Dynamics . . . Masayuki Ohzeki Kyoto University 2015/08/11 Japan-France Joint Seminar “New Frontiers in Non-equilibrium Physics of Glassy Materials” This work is in collaboration with M. Yasuda (Yamagata Univ.) and A. Ichiki (Nagoya Univ.) . . . . . . M. Ohzeki (KU) Japan-France Joint Seminar 2015/08/11 1 / 20

  2. . . . Accelerated Langevin dynamics 1 Formulation Example: double-valley potential Example: XY model . . . Boltzmann Machine Learning 2 Basic Contrastive divergence Preliminary result . . . Summary 3 . . . . . . M. Ohzeki (KU) Japan-France Joint Seminar 2015/08/11 2 / 20

  3. What is the accelerated stochastic dynamics? . . . . . . M. Ohzeki (KU) Japan-France Joint Seminar 2015/08/11 3 / 20

  4. . Ordinary Langevin dynamics . . The over-damped N -dimensional Langevin dynamics is given by √ d x = − ∂E ( x ) + 2 Td W , ∂ x where T is the temperature and W is the Wiener process. . . . . Equilibrium distribution . . The equilibrium state is P eq ( x ) = 1 ( − E ( x ) ) Z exp . T . . . Why do you use this dynamics? Investigation of the probability distribution in the dynamics Simulation of the natural stochastic dynamics . . . . . . M. Ohzeki (KU) Japan-France Joint Seminar 2015/08/11 4 / 20

  5. . Ordinary Langevin dynamics . . The over-damped N -dimensional Langevin dynamics is given by √ d x = − ∂E ( x ) + 2 Td W , ∂ x where T is the temperature and W is the Wiener process. . . . . Equilibrium distribution . . The equilibrium state is P eq ( x ) = 1 ( − E ( x ) ) Z exp . T . . . Why do you use this dynamics? Investigation of the probability distribution in the dynamics Simulation of the natural stochastic dynamics . . . . . . M. Ohzeki (KU) Japan-France Joint Seminar 2015/08/11 4 / 20

  6. . Ordinary Langevin dynamics . . The over-damped N -dimensional Langevin dynamics is given by √ d x = − ∂E ( x ) + 2 Td W , ∂ x where T is the temperature and W is the Wiener process. . . . . Equilibrium distribution . . The equilibrium state is P eq ( x ) = 1 ( − E ( x ) ) Z exp . T . . . Why do you use this dynamics? Investigation of the probability distribution in the dynamics Simulation of the natural stochastic dynamics . . . . . . M. Ohzeki (KU) Japan-France Joint Seminar 2015/08/11 4 / 20

  7. . Ordinary Langevin dynamics . . The over-damped N -dimensional Langevin dynamics is given by √ d x = − ∂E ( x ) + 2 Td W , ∂ x where T is the temperature and W is the Wiener process. . . . . Equilibrium distribution . . The equilibrium state is P eq ( x ) = 1 ( − E ( x ) ) Z exp . T . . . Why do you use this dynamics? Investigation of the probability distribution in the dynamics Simulation of the natural stochastic dynamics . . . . . . M. Ohzeki (KU) Japan-France Joint Seminar 2015/08/11 4 / 20

  8. In order to evaluate the distribution quickly, we do not necessarily use the natural force . . . . . . M. Ohzeki (KU) Japan-France Joint Seminar 2015/08/11 5 / 20

  9. . Accelerated Langevin dynamics . . Let us find the accelerated Langevin dynamics with the simple form of √ d x = − ∂E ( x ) + F ( x ) + 2 Td W , ∂ x where T is the temperature and d W is the Wiener process. . . . . Condition . . The steady state has the Gibbs-Boltzmann distribution P ss ( x ) = 1 ( − E ( x ) ) Z exp T . . . What force can hold the same steady state? . . . . . . M. Ohzeki (KU) Japan-France Joint Seminar 2015/08/11 6 / 20

  10. . Accelerated Langevin dynamics . . Let us find the accelerated Langevin dynamics with the simple form of √ d x = − ∂E ( x ) + F ( x ) + 2 Td W , ∂ x where T is the temperature and d W is the Wiener process. . . . . Condition . . The steady state has the Gibbs-Boltzmann distribution P ss ( x ) = 1 ( − E ( x ) ) Z exp T . . . What force can hold the same steady state? . . . . . . M. Ohzeki (KU) Japan-France Joint Seminar 2015/08/11 6 / 20

  11. . Accelerated Langevin dynamics . . Let us find the accelerated Langevin dynamics with the simple form of √ d x = − ∂E ( x ) + F ( x ) + 2 Td W , ∂ x where T is the temperature and d W is the Wiener process. . . . . Condition . . The steady state has the Gibbs-Boltzmann distribution P ss ( x ) = 1 ( − E ( x ) ) Z exp T . . . What force can hold the same steady state? . . . . . . M. Ohzeki (KU) Japan-France Joint Seminar 2015/08/11 6 / 20

  12. . Nontrivial force [M.Ohzeki and A. Ichiki (2015)] . . Find solution of the Fokker-Planck equation ( ) ∂P t ( x ) = − ∂ − ∂E ( x ) + F ( x ) − T ∂ P t ( x ) ∂t ∂ x ∂ x ∂ x The condition is reduced to 0 = − ∂ ∂ x ( F ( x ) P ss ( x )) . . . Equilibrium force F ( x ) = 0 Exponential force F ( x ) ∝ γ exp ( E ( x ) /T ) Rotational force ([ ∂E ( x ) ) ] [ ∂E ( x ) ] [ F ( x )] P ( i ) = γ − ∂ x ∂ x P ( i − 1) P ( i +1) where P ( i ) is the permutation of indices. . . . . . . M. Ohzeki (KU) Japan-France Joint Seminar 2015/08/11 7 / 20

  13. . Nontrivial force [M.Ohzeki and A. Ichiki (2015)] . . Find solution of the Fokker-Planck equation ( ) ∂P t ( x ) = − ∂ − ∂E ( x ) + F ( x ) − T ∂ P t ( x ) ∂t ∂ x ∂ x ∂ x The condition is reduced to 0 = − ∂ ∂ x ( F ( x ) P ss ( x )) . . . Equilibrium force F ( x ) = 0 Exponential force F ( x ) ∝ γ exp ( E ( x ) /T ) Rotational force ([ ∂E ( x ) ) ] [ ∂E ( x ) ] [ F ( x )] P ( i ) = γ − ∂ x ∂ x P ( i − 1) P ( i +1) where P ( i ) is the permutation of indices. . . . . . . M. Ohzeki (KU) Japan-France Joint Seminar 2015/08/11 7 / 20

  14. . Nontrivial force [M.Ohzeki and A. Ichiki (2015)] . . Find solution of the Fokker-Planck equation ( ) ∂P t ( x ) = − ∂ − ∂E ( x ) + F ( x ) − T ∂ P t ( x ) ∂t ∂ x ∂ x ∂ x The condition is reduced to 0 = − ∂ ∂ x ( F ( x ) P ss ( x )) . . . Equilibrium force F ( x ) = 0 Exponential force F ( x ) ∝ γ exp ( E ( x ) /T ) Rotational force ([ ∂E ( x ) ) ] [ ∂E ( x ) ] [ F ( x )] P ( i ) = γ − ∂ x ∂ x P ( i − 1) P ( i +1) where P ( i ) is the permutation of indices. . . . . . . M. Ohzeki (KU) Japan-France Joint Seminar 2015/08/11 7 / 20

  15. . Nontrivial force in duplicate system [M.Ohzeki and A. Ichiki (2015)] . . Find solution of the Fokker-Planck equation for a duplicate system ( ) ∂P t ( x 1 , x 2 ) − ∂ − ∂E ( x 1 ) + F 1 ( x 1 , x 2 ) − T ∂ = P t ( x 1 , x 2 ) ∂t ∂ x 1 ∂ x 1 ∂ x 1 ( ) − ∂ − ∂E ( x 2 ) + F 2 ( x 1 , x 2 ) − T ∂ P t ( x 1 , x 2 ) ∂ x 2 ∂ x 2 ∂ x 2 The condition is reduced to 0 = − ∂ ∂ ( F 1 ( x 1 , x 2 ) P ss ( x 1 ) P ss ( x 2 )) − ( F 1 ( x 1 , x 2 ) P ss ( x 1 ) P ss ( x 2 )) ∂ x 1 ∂ x 2 . . . Nontrivial force in the duplicate system γ ∂E ( x 2 ) F 1 ( x 1 , x 2 ) = ∂ x 2 − γ ∂E ( x 1 ) F 2 ( x 1 , x 2 ) = . ∂ x 1 . . . . . . M. Ohzeki (KU) Japan-France Joint Seminar 2015/08/11 8 / 20

  16. . What does the nontrivial force yield? . . Violation of the detailed balance condition ( γ � = 0 ) Convergence to nonequilibrium steady state Faster convergence than equilibrium system in analytical way by matrix analysis [A. Ichiki and M. Ohzeki (2013)] . . . . . . . . . M. Ohzeki (KU) Japan-France Joint Seminar 2015/08/11 9 / 20

  17. . Example: double-valley potential [M. Ohzeki and A. Ichiki (2015)] . . We set N = 1000 particles in a double-valley potential E ( x ) = − 1 2 x 2 + 1 4 x 4 . . . 2 1.5 1 E(x) 0.5 x eq 0 x 0 −0.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 x . . . . . . M. Ohzeki (KU) Japan-France Joint Seminar 2015/08/11 10 / 20

  18. . Example: double-valley potential [M. Ohzeki and A. Ichiki (2015)] . . We set N = 1000 particles in a double-valley potential E ( x ) = − 1 2 x 2 + 1 4 x 4 . . . at t = 5 in T = 1 . γ = 0 (red) vs γ = 1 (blue and purple). 1.2 (x 0 ,x 0 ) 1 1 0.8 0.8 0.6 0.6 <x> <x 2 > 0.4 0.4 0.2 (x eq ,x eq ) 0.2 0 0 −0.2 −0.4 −0.2 0 0.5 1 0 1 2 3 4 5 <x 1 > time . . . . . . M. Ohzeki (KU) Japan-France Joint Seminar 2015/08/11 10 / 20

  19. . Example: double-valley potential [M. Ohzeki and A. Ichiki (2015)] . . We set N = 1000 particles in a double-valley potential E ( x ) = − 1 2 x 2 + 1 4 x 4 . . . at t = 5 in T = 1 . γ = 0 (red) vs γ = 2 (blue and purple). 1.2 (x 0 ,x 0 ) 1 1 0.8 0.8 0.6 0.6 <x> <x 2 > 0.4 0.4 0.2 (x eq ,x eq ) 0.2 0 0 −0.2 −0.4 −0.2 0 0.5 1 0 1 2 3 4 5 <x 1 > time . . . . . . M. Ohzeki (KU) Japan-France Joint Seminar 2015/08/11 10 / 20

  20. . Example: double-valley potential [M. Ohzeki and A. Ichiki (2015)] . . We set N = 1000 particles in a double-valley potential E ( x ) = − 1 2 x 2 + 1 4 x 4 . . . at t = 5 in T = 1 . γ = 0 (red) vs γ = 5 (blue and purple). 1.2 (x 0 ,x 0 ) 1 1 0.8 0.8 0.6 0.6 <x> <x 2 > 0.4 0.4 0.2 (x eq ,x eq ) 0.2 0 0 −0.2 −0.4 −0.2 0 0.5 1 0 1 2 3 4 5 <x 1 > time . . . . . . M. Ohzeki (KU) Japan-France Joint Seminar 2015/08/11 10 / 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend